Powers of hypercyclic functions for some classical hypercyclic operators

被引:23
作者
Aron, R. M. [1 ]
Conejero, J. A.
Peris, A.
Seoane-Sepulveda, J. B.
机构
[1] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
[2] Univ Politecn Valencia, Dept Matemat Aplicada, F Informat, E-46022 Valencia, Spain
[3] Univ Politecn Valencia, IMPA, F Informat, E-46022 Valencia, Spain
[4] Univ Politecn Valencia, IMPA, ETS Arquitectura, E-46022 Valencia, Spain
[5] Univ Politecn Valencia, Dept Matemat Aplicada, ETS Arquitectura, E-46022 Valencia, Spain
[6] Univ Complutense Madrid, Fac Ciencias Matemat, Dept Anal Matemat, E-28040 Madrid, Spain
关键词
hypercyclic vectors; universal functions;
D O I
10.1007/s00020-007-1490-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that no power of any entire function is hypercyclic for Birkhoff's translation operator on H(C). On the other hand, we see that the set of functions whose powers are all hypercyclic for MacLane's differentiation operator is a G(delta)-dense subset of H(C).
引用
收藏
页码:591 / 596
页数:6
相关论文
共 17 条
[1]  
Aron R, 2004, J KOREAN MATH SOC, V41, P65
[2]   Exponential type of hypercyclic entire functions [J].
Bernal-González, L ;
Bonilla, A .
ARCHIV DER MATHEMATIK, 2002, 78 (04) :283-290
[3]  
Birkhoff GD, 1929, CR HEBD ACAD SCI, V189, P473
[4]   A UNIVERSAL ENTIRE FUNCTION [J].
BLAIR, C ;
RUBEL, LA .
AMERICAN MATHEMATICAL MONTHLY, 1983, 90 (05) :331-332
[5]  
Blair C., 1984, ENSEIGN MATH, V30, P269
[6]   On a theorem of Godefroy and Shapiro [J].
Bonilla, A. ;
Grosse-Erdmann, K. -G. .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2006, 56 (02) :151-162
[7]   THE CYCLIC BEHAVIOR OF TRANSLATION OPERATORS ON HILBERT-SPACES OF ENTIRE-FUNCTIONS [J].
CHAN, KC ;
SHAPIRO, JH .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1991, 40 (04) :1421-1449
[8]  
Conway J. B., 1978, Functions of One Complex Variable, V2nd
[9]   Remarks on a result about hypercyclic non-convolution operators [J].
Fernández, G ;
Hallack, AA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 309 (01) :52-55
[10]   OPERATORS WITH DENSE, INVARIANT, CYCLIC VECTOR MANIFOLDS [J].
GODEFROY, G ;
SHAPIRO, JH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 98 (02) :229-269