Thermodynamics of metal-organic frameworks

被引:42
|
作者
Wu, Di
Navrotsky, Alexandra [1 ]
机构
[1] Univ Calif Davis, Peter A Rock Thermochem Lab, Davis, CA 95616 USA
关键词
Metal-organic framework; Thermodynamics; Calorimetry; Energetics; Guest-host interaction and confinement; Adsorption; CARBON-DIOXIDE; MESOPOROUS SILICA; HYDROGEN STORAGE; PORE-SIZE; ZEOLITE; ENTHALPY; ENERGETICS; DESIGN; THERMOCHEMISTRY; DEHYDRATION;
D O I
10.1016/j.jssc.2014.06.015
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Although there have been extensive studies over the past decade in the synthesis and application of metal-organic frameworks (MOFs), investigation of their thermodynamic stability and of the energetics of guest-host interactions has been much more limited. This review summarizes recent progress in experimental (calorimetric) determination of the thermodynamics of MOF materials. The enthalpies of MOFs relative to dense phase assemblages suggest only modest metastability, with a general increase of enthalpy with increasing molar volume, which becomes less pronounced at higher porosity. The energy landscape of nanoporous materials (inorganic and hybrid) consists of a pair of parallel patterns within a fairly narrow range of metastability of 5-30 kJ per mole of tetrahedra in zeolites and mesoporous silicas or per mole of metal in MOFs. Thus strong thermodynamic instability does not seem to limit framework formation. There are strong interactions within the chemisorption range for small molecule-MOF interactions with defined chemical binding at the metal centers or other specific locations. Coexistence of surface binding and confinement can lead to much stronger guest-host interactions. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:53 / 58
页数:6
相关论文
共 50 条
  • [1] Recent advances in experimental thermodynamics of metal-organic frameworks
    Sun, Hui
    Wu, Di
    POWDER DIFFRACTION, 2019, 34 (04) : 297 - 301
  • [2] Thermodynamics of Hydrogen Adsorption on Metal-Organic Frameworks
    Arean, Carlos O.
    Chavan, Sachin
    Cabello, Carlos P.
    Garrone, Edoardo
    Palomino, Gemma T.
    CHEMPHYSCHEM, 2010, 11 (15) : 3237 - 3242
  • [3] Thermodynamics of the structural transition in metal-organic frameworks
    Rodriguez, J.
    Beurroies, I.
    Coulet, M. -V.
    Fabry, P.
    Devic, T.
    Serre, C.
    Denoyel, R.
    Llewellyn, P. L.
    DALTON TRANSACTIONS, 2016, 45 (10) : 4274 - 4282
  • [4] Metal-Organic Frameworks for Methane Storage
    Wang, Xuan
    Fordham, Stephen
    Zhou, Hong-Cai
    NANOMATERIALS FOR SUSTAINABLE ENERGY, 2015, 1213 : 173 - 191
  • [5] Emerging adsorptive removal of azo dye by metal-organic frameworks
    Ayati, Ali
    Shahrak, Mahdi Niknam
    Tanhaei, Bahareh
    Sillanpaa, Mika
    CHEMOSPHERE, 2016, 160 : 30 - 44
  • [6] Retrofitting metal-organic frameworks
    Schneider, Christian
    Bodesheim, David
    Keupp, Julian
    Schmid, Rochus
    Kieslich, Gregor
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [7] Characterization of metal-organic frameworks by water adsorption
    Kuesgens, Pia
    Rose, Marcus
    Senkovska, Irena
    Froede, Heidrun
    Henschel, Antje
    Siegle, Sven
    Kaskel, Stefan
    MICROPOROUS AND MESOPOROUS MATERIALS, 2009, 120 (03) : 325 - 330
  • [8] Modeling gas separation in metal-organic frameworks
    Wells, Brad A.
    Chaffee, Alan L.
    ADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY, 2011, 17 (01): : 255 - 264
  • [9] Gas storage in porous metal-organic frameworks for clean energy applications
    Ma, Shengqian
    Zhou, Hong-Cai
    CHEMICAL COMMUNICATIONS, 2010, 46 (01) : 44 - 53
  • [10] Encapsulation of large dye molecules in hierarchically superstructured metal-organic frameworks
    Yue, Yanfeng
    Binder, Andrew J.
    Song, Ruijing
    Cui, Yuanjing
    Chen, Jihua
    Hensley, Dale K.
    Dai, Sheng
    DALTON TRANSACTIONS, 2014, 43 (48) : 17893 - 17898