Biphasic-to-monophasic successive Co-assembly approach to yolk-shell structured mesoporous organosilica nanoparticles

被引:8
作者
Dang, Meng [1 ,2 ]
Teng, Zhaogang [1 ,2 ,3 ,4 ]
Su, Xiaodan [1 ,2 ]
Tao, Jun [1 ,2 ]
Hao, Qing [1 ,2 ]
Ma, Xiaobo [1 ,2 ]
Zhang, Yunlei [3 ]
Li, Yanjiao [5 ]
Tian, Ying [3 ]
Zhang, Junjie [1 ,2 ]
Lu, Guangming [3 ,4 ]
Wang, Lianhui [1 ,2 ]
机构
[1] Nanjing Univ Posts & Telecommun, Key Lab Organ Elect & Informat Displays, 9 Wenyuan Rd, Nanjing 210023, Jiangsu, Peoples R China
[2] Nanjing Univ Posts & Telecommun, IAM, Jiangsu Natl Synerget Innovat Ctr Adv Mat SICAM, 9 Wenyuan Rd, Nanjing 210023, Jiangsu, Peoples R China
[3] Nanjing Univ, Sch Med, Jinling Hosp, Dept Med Imaging, Nanjing 210002, Jiangsu, Peoples R China
[4] Nanjing Univ, Sch Chem & Chem Engn, State Key Lab Analyt Chem Life Sci, Nanjing 210093, Jiangsu, Peoples R China
[5] Xiamen Univ, Dept Med Imaging, Southeast Hosp, Zhangzhou 363000, Peoples R China
基金
中国国家自然科学基金;
关键词
Biphasic-to-monophasic; Co-assembly; Yolk shell; Mesoporous organosilica nanoparticles; SILICA NANOPARTICLES; FACILE SYNTHESIS; TRANSFORMATION; FRAMEWORKS; DELIVERY; HYBRIDIZATION; BIOMEDICINE; CHEMISTRY; SPHERES; CORE;
D O I
10.1016/j.jcis.2017.08.008
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, we report a facile biphasic-to-monophasic successive co-assembly approach to synthesize yolk-shell structured mesoporous organosilica nanoparticles (MONs). The yolk-shell structured MONs possess ethane-bridged frameworks, high surface area (1023 m(2) g(-1)), radially oriented mesochannels (3.8 nm), large pore volume (0.99 cm(3) g(-1)), and tunable diameter (147-324 nm) and shell thickness (23-53 nm). The biphasic-to-monophasic successive co-assembly method is intrinsically simple and requires neither sacrificial templates nor multistep coating processes. The key of the method is that the interiors of the mesostructured organosilica nanospheres grown in the biphasic system have a lower condensation degree and Si-C-C-Si species content than the outer shells formed in the monophasic system. Thus, the interior layer is attracted by OH-1 anions and dissolved in the monophasic system, forming the yolk-shell structures. In vitro cytotoxicity and haemolysis assays demonstrate that the ethane bridged yolk-shell MONs possess excellent biocompatibility. Furthermore, the chemotherapy drug doxorubicin (DOX) is loaded into the yolk-shell MONs to kill drug-resistant MCF-7/ADR human breast cancer cells. Compared with free DOX and DOX-loaded typical MONs, the DOX-loaded yolk-shell MONs have higher chemotherapeutic efficacy against MCF-7/ADR cells, suggesting the great potential of yolk-shell MONs synthesized via the biphasic-to-monophasic successive co-assembly approach in the biomedical field. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:242 / 249
页数:8
相关论文
共 31 条
[1]   Chemistry of Mesoporous Organosilica in Nanotechnology: Molecularly Organic-Inorganic Hybridization into Frameworks [J].
Chen, Yu ;
Shi, Jianlin .
ADVANCED MATERIALS, 2016, 28 (17) :3235-3272
[2]   Hollow Mesoporous Organosilica Nanoparticles: A Generic Intelligent Framework-Hybridization Approach for Biomedicine [J].
Chen, Yu ;
Meng, Qingshuo ;
Wu, Meiying ;
Wang, Shige ;
Xu, Pengfei ;
Chen, Hangrong ;
Li, Yaping ;
Zhang, Lingxia ;
Wang, Lianzhou ;
Shi, Jianlin .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (46) :16326-16334
[3]   Colloidal HPMO Nanoparticles: Silica-Etching Chemistry Tailoring, Topological Transformation, and Nano-Biomedical Applications [J].
Chen, Yu ;
Xu, Pengfei ;
Chen, Hangrong ;
Li, Yongsheng ;
Bu, Wenbo ;
Shu, Zhu ;
Li, Yaping ;
Zhang, Jiamin ;
Zhang, Lingxia ;
Pan, Limin ;
Cui, Xiangzhi ;
Hua, Zile ;
Wang, Jin ;
Zhang, Linlin ;
Shi, Jianlin .
ADVANCED MATERIALS, 2013, 25 (22) :3100-3105
[4]   Nanoporous organosilica membrane for water desalination [J].
Chua, Yen Thien ;
Lin, Chun Xiang Cynthia ;
Kleitz, Freddy ;
Zhao, Xiu Song ;
Smart, Simon .
CHEMICAL COMMUNICATIONS, 2013, 49 (40) :4534-4536
[5]   One-Pot Construction of Multipodal Hybrid Periodic Mesoporous Organosilica Nanoparticles with Crystal-Like Architectures [J].
Croissant, Jonas ;
Cattoen, Xavier ;
Man, Michel Wong Chi ;
Dieudonne, Philippe ;
Charnay, Clarence ;
Raehm, Laurence ;
Durand, Jean-Olivier .
ADVANCED MATERIALS, 2015, 27 (01) :145-149
[6]   Biodegradable Ethylene-Bis(Propyl)Disulfide-Based Periodic Mesoporous Organosilica Nanorods and Nanospheres for Efficient In-Vitro Drug Delivery [J].
Croissant, Jonas ;
Cattoen, Xavier ;
Man, Michel Wong Chi ;
Gallud, Audrey ;
Raehm, Laurence ;
Trens, Philippe ;
Maynadier, Marie ;
Durand, Jean-Olivier .
ADVANCED MATERIALS, 2014, 26 (35) :6174-+
[7]   Mesoporous organosilica nanoparticles with large radial pores via an assembly-reconstruction process in bi-phase [J].
Dang, Meng ;
Li, Wei ;
Zheng, Yuanyi ;
Su, Xiaodan ;
Ma, Xiaobo ;
Zhang, Yunlei ;
Ni, Qianqian ;
Tao, Jun ;
Zhang, Junjie ;
Lu, Guangming ;
Teng, Zhaogang ;
Wang, Lianhui .
JOURNAL OF MATERIALS CHEMISTRY B, 2017, 5 (14) :2625-2634
[8]   Ethane-Bridged Periodic Mesoporous Organosilicas Functionalized with High Loadings of Carboxylic Acid Groups: Synthesis, Bifunctionalization, and Fabrication of Metal Nanoparticles [J].
Deka, Juti Rani ;
Kao, Hsien-Ming ;
Huang, Shu-Ying ;
Chang, Wei-Chieh ;
Ting, Chun-Chiang ;
Rath, Purna Chandra ;
Chen, Ching-Shiun .
CHEMISTRY-A EUROPEAN JOURNAL, 2014, 20 (03) :894-903
[9]   Mesoporous silica nanoparticles with organo-bridged silsesquioxane framework as innovative platforms for bioimaging and therapeutic agent delivery [J].
Du, Xin ;
Li, Xiaoyu ;
Xiong, Lin ;
Zhang, Xueji ;
Kleitz, Freddy ;
Qiao, Shi Zhang .
BIOMATERIALS, 2016, 91 :90-127
[10]   Understanding the hydrothermal stability of large-pore periodic mesoporous organosilicas and pure silicas [J].
Guo, Wanping ;
Li, Xu ;
Zhao, X. S. .
MICROPOROUS AND MESOPOROUS MATERIALS, 2006, 93 (1-3) :285-293