Spin photovoltaic effect in magnetic van der Waals heterostructures

被引:38
|
作者
Song, Tiancheng [1 ]
Anderson, Eric [1 ]
Tu, Matisse Wei-Yuan [2 ]
Seyler, Kyle [1 ]
Taniguchi, Takashi [3 ]
Watanabe, Kenji [4 ]
McGuire, Michael A. [5 ]
Li, Xiaosong [6 ]
Cao, Ting [6 ]
Xiao, Di [7 ]
Yao, Wang [8 ]
Xu, Xiaodong [1 ,6 ]
机构
[1] Univ Washington, Dept Phys, Seattle, WA 98195 USA
[2] Natl Cheng Kung Univ, Dept Phys, Tainan 70101, Taiwan
[3] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[4] Natl Inst Mat Sci, Res Ctr Funct Mat, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[5] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA
[6] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA
[7] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA
[8] Univ Hong Kong, Dept Phys, Hong Kong, Peoples R China
关键词
MAGNETORESISTANCE; FERROMAGNETISM; GENERATION;
D O I
10.1126/sciadv.abg8094
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The development of van der Waals (vdW) crystals and their heterostructures has created a fascinating platform for exploring optoelectronic properties in the two-dimensional (2D) limit. With the recent discovery of 2D magnets, the control of the spin degree of freedom can be integrated to realize 2D spin-optoelectronics. Here, we report spin photovoltaic effects in vdW heterostructures of 2D magnet chromium triiodide (CrI3) sandwiched by graphene contacts. The photocurrent displays a distinct dependence on light helicity, which can be tuned by varying the magnetic states and photon energy. Circular polarization-resolved absorption measurements reveal that these observations originate from magnetic order-coupled and, thus, helicity-dependent charge-transfer excitons. The photocurrent displays multiple plateaus as the magnetic field is swept, associated with different CrI3 spin configurations. Giant photo-magnetocurrent is observed, which tends to infinity for a small applied bias. Our results pave the way to explore emergent photospintronics by engineering magnetic vdW heterostructures.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Layer photovoltaic effect in van der Waals heterostructures
    Matsyshyn, Oles
    Xiong, Ying
    Arora, Arpit
    Song, Justin C. W.
    PHYSICAL REVIEW B, 2023, 107 (20)
  • [2] Magnetic proximity enabled bulk photovoltaic effects in van der Waals heterostructures
    Mu, Xingchi
    Xue, Qianqian
    Sun, Yan
    Zhou, Jian
    PHYSICAL REVIEW RESEARCH, 2023, 5 (01):
  • [3] Spin valve effect in CrN/GaN van der Waals heterostructures
    Xue, Junjun
    Chen, Wei
    Tao, Tao
    Zhi, Ting
    Shao, Pengfei
    Cai, Qing
    Yang, Guofeng
    Wang, Jin
    Chen, Dunjun
    Zhang, Rong
    JOURNAL OF APPLIED PHYSICS, 2023, 134 (14)
  • [4] Coupled spin-charge dynamics in magnetic van der Waals heterostructures
    Rustagi, Avinash
    Solanki, Abhishek Bharatbhai
    Tserkovnyak, Yaroslav
    Upadhyaya, Pramey
    PHYSICAL REVIEW B, 2020, 102 (09)
  • [5] Spin valve effect in VN/GaN/VN van der Waals heterostructures
    Ye, Haoshen
    Zhu, Yijie
    Bai, Dongmei
    Zhang, Junting
    Wu, Xiaoshan
    Wang, Jianli
    PHYSICAL REVIEW B, 2021, 103 (03)
  • [6] Emerging Magnetic Interactions in van der Waals Heterostructures
    Huang, Yulong
    Wolowiec, Christian
    Zhu, Taishan
    Hu, Yong
    An, Lu
    Li, Zheng
    Grossman, Jeffrey C.
    Schuller, Ivan K.
    Ren, Shenqiang
    NANO LETTERS, 2020, 20 (11) : 7852 - 7859
  • [7] Photovoltaic Effect in Graphene/MoS2/Si Van der Waals Heterostructures
    Shi, Weilin
    Ma, Xiying
    COATINGS, 2018, 8 (01):
  • [8] Van der Waals heterostructures
    Barnes, Natalie
    NATURE REVIEWS METHODS PRIMERS, 2022, 2 (01):
  • [9] Van der Waals heterostructures
    Geim, A. K.
    Grigorieva, I. V.
    NATURE, 2013, 499 (7459) : 419 - 425
  • [10] Van der Waals heterostructures
    Nature Reviews Methods Primers, 2