Real-time rolling bearing power loss in wind turbine gearbox modeling and prediction based on calculations and artificial neural network

被引:22
作者
Fotso, Hervice Romeo Fogno [1 ]
Kaze, Claude Vidal Aloyem [2 ]
Kenmoe, Germaine Djuidje [1 ]
机构
[1] Univ Yaounde I, Dept Phys, Lab Mech, POB 812, Yaounde, Cameroon
[2] Univ Buea, Dept Renewable Energy, HTTTC Kumba, Buea, Cameroon
关键词
Wind turbine; Gearbox; Rolling bearing; Real-time power loss prediction; FRICTION TORQUE; EFFICIENCY; SPEED; OILS;
D O I
10.1016/j.triboint.2021.107171
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper investigates the bearing power loss in gearbox for wind turbines under actual operating wind speed. Actual power loss values are calculated using calibrated SKF model for three different wind turbine gearbox oils. The gearbox applied load at each operating step is determined by using the wind turbine power curve. Wind data from experiments in Cameroon are used for validation. The back-propagation neural network is designed for actual power loss modeling and predicting desired values. The achieved results revealed that the bearing power loss is highly influenced by the wind turbine operating parameters, capacity, and oil. The difference between actual and neural network predicted bearing power loss values under real-time operating parameters showed the effectiveness of the proposed approach.
引用
收藏
页数:10
相关论文
共 28 条
[1]  
[Anonymous], 2005, SKF GEN CATALOGUE 60
[2]   Theoretical and computational investigations of the optimal tip-speed ratio of horizontal-axis wind turbines [J].
Bakirci, Mehmet ;
Yilmaz, Sezayi .
ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH, 2018, 21 (06) :1128-1142
[3]  
Beig AR., 2017, ELECT RENEW ENERGY S, DOI [10.1016/B978-0-12-804448-3/00004-9, DOI 10.1016/B978-0-12-804448-3/00004-9]
[4]   Review of power curve modelling for wind turbines [J].
Carrillo, C. ;
Obando Montano, A. F. ;
Cidras, J. ;
Diaz-Dorado, E. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2013, 21 :572-581
[5]   Influence of gear loss factor on the power loss prediction [J].
Fernandes, C. M. C. G. ;
Marques, P. M. T. ;
Martins, R. C. ;
Seabra, J. H. O. .
MECHANICAL SCIENCES, 2015, 6 (02) :81-88
[6]   Power loss prediction: Application to a 2.5MW wind turbine gearbox [J].
Fernandes, Carlos M. C. G. ;
Hammami, Maroua ;
Martins, Ramiro C. ;
Seabra, Jorge H. O. .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART J-JOURNAL OF ENGINEERING TRIBOLOGY, 2016, 230 (08) :983-995
[7]   Energy efficiency tests in a full scale wind turbine gearbox [J].
Fernandes, Carlos M. C. G. ;
Blazquez, Luis ;
Sanesteban, Jorge ;
Martins, Ramiro C. ;
Seabra, Jorge H. O. .
TRIBOLOGY INTERNATIONAL, 2016, 101 :375-382
[8]   Gearbox power loss. Part III: Application to a parallel axis and a planetary gearbox [J].
Fernandes, Carlos M. C. G. ;
Marques, Pedro M. T. ;
Martins, Ramiro C. ;
Seabra, Jorge H. O. .
TRIBOLOGY INTERNATIONAL, 2015, 88 :317-326
[9]   Gearbox power loss. Part I: Losses in rolling bearings [J].
Fernandes, Carlos M. C. G. ;
Marques, Pedro M. T. ;
Martins, Ramiro C. ;
Seabra, Jorge H. O. .
TRIBOLOGY INTERNATIONAL, 2015, 88 :298-308
[10]   Gearbox power loss. Part II: Friction losses in gears [J].
Fernandes, Carlos M. C. G. ;
Marques, Pedro M. T. ;
Martins, Ramiro C. ;
Seabra, Jorge H. O. .
TRIBOLOGY INTERNATIONAL, 2015, 88 :309-316