Computer-Aided Diagnosis Improves the Detection of Clinically Significant Prostate Cancer on Multiparametric-MRI: A Multi-Observer Performance Study Involving Inexperienced Readers

被引:14
作者
Giannini, Valentina [1 ,2 ]
Mazzetti, Simone [1 ,2 ]
Cappello, Giovanni [2 ]
Doronzio, Valeria Maria [2 ]
Vassallo, Lorenzo [2 ]
Russo, Filippo [2 ]
Giacobbe, Alessandro [3 ]
Muto, Giovanni [4 ]
Regge, Daniele [1 ,2 ]
机构
[1] Univ Turin, Dept Surg Sci, I-10126 Turin, Italy
[2] IRCCS, Candiolo Canc Inst, FPO, Dept Radiol, I-10060 Candiolo, Italy
[3] Humanitas Gradenigo, Dept Urol, I-10153 Turin, Italy
[4] Humanitas Univ, Dept Urol, I-10153 Turin, Italy
关键词
computer aided diagnosis; prostate cancer; artificial intelligence; assisted reading; CT COLONOGRAPHY; 2ND READER; LESIONS;
D O I
10.3390/diagnostics11060973
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Recently, Computer Aided Diagnosis (CAD) systems have been proposed to help radiologists in detecting and characterizing Prostate Cancer (PCa). However, few studies evaluated the performances of these systems in a clinical setting, especially when used by non-experienced readers. The main aim of this study is to assess the diagnostic performance of non-experienced readers when reporting assisted by the likelihood map generated by a CAD system, and to compare the results with the unassisted interpretation. Three resident radiologists were asked to review multiparametric-MRI of patients with and without PCa, both unassisted and assisted by a CAD system. In both reading sessions, residents recorded all positive cases, and sensitivity, specificity, negative and positive predictive values were computed and compared. The dataset comprised 90 patients (45 with at least one clinically significant biopsy-confirmed PCa). Sensitivity significantly increased in the CAD assisted mode for patients with at least one clinically significant lesion (GS > 6) (68.7% vs. 78.1%, p = 0.018). Overall specificity was not statistically different between unassisted and assisted sessions (94.8% vs. 89.6, p = 0.072). The use of the CAD system significantly increases the per-patient sensitivity of inexperienced readers in the detection of clinically significant PCa, without negatively affecting specificity, while significantly reducing overall reporting time.
引用
收藏
页数:13
相关论文
共 30 条
[21]   CT colonography with computer-aided detection as a second reader: Observer performance study [J].
Petrick, Nicholas ;
Haider, Maruf ;
Summers, Ronald M. ;
Yeshwant, Srinath C. ;
Brown, Linda ;
Iuliano, Edward M. ;
Louie, Adeline ;
Choi, J. Richard ;
Pickhardt, Perry J. .
RADIOLOGY, 2008, 246 (01) :148-156
[22]   Efficacy of Computer-aided Detection as a Second Reader for 6-9-mm Lesions at CT Colonography: Multicenter Prospective Trial [J].
Regge, Daniele ;
Della Monica, Patrizia ;
Galatola, Giovanni ;
Laudi, Cristiana ;
Zambon, Antonella ;
Correale, Loredana ;
Asnaghi, Roberto ;
Barbaro, Brunella ;
Borghi, Claudia ;
Campanella, Delia ;
Cassinis, Maria Carla ;
Ferrari, Riccardo ;
Ferraris, Andrea ;
Golfieri, Rita ;
Hassan, Cesare ;
Iafrate, Franco ;
Iussich, Gabriella ;
Laghi, Andrea ;
Massara, Roberto ;
Neri, Emanuele ;
Sali, Lapo ;
Venturini, Silvia ;
Gandini, Giovanni .
RADIOLOGY, 2013, 266 (01) :168-176
[23]   MRI of the prostate: Interobserver agreement compared with histopathologic outcome after radical prostatectomy [J].
Ruprecht, Oliver ;
Weisser, Philipp ;
Bodelle, Boris ;
Ackermann, Hanns ;
Vogl, Thomas J. .
EUROPEAN JOURNAL OF RADIOLOGY, 2012, 81 (03) :456-460
[24]   Diagnostic Accuracy of Single-plane Biparametric and Multiparametric Magnetic Resonance Imaging in Prostate Cancer: A Randomized Noninferiority Trial in Biopsy-naive Men [J].
Russo, Filippo ;
Mazzetti, Simone ;
Regge, Daniele ;
Ambrosini, Ilaria ;
Giannini, Valentina ;
Manfredi, Matteo ;
De Luca, Stefano ;
Bollito, Enrico ;
Porpiglia, Francesco .
EUROPEAN UROLOGY ONCOLOGY, 2021, 4 (06) :855-862
[25]   Detection of prostate cancer index lesions with multiparametric magnetic resonance imaging (mp-MRI) using whole-mount histological sections as the reference standard [J].
Russo, Filippo ;
Regge, Daniele ;
Armando, Enrico ;
Giannini, Valentina ;
Vignati, Anna ;
Mazzetti, Simone ;
Manfredi, Matteo ;
Bollito, Enrico ;
Correale, Loredana ;
Porpiglia, Francesco .
BJU INTERNATIONAL, 2016, 118 (01) :84-94
[26]   Computer-based self-training for CT colonography with and without CAD [J].
Sali, Lapo ;
Delsanto, Silvia ;
Sacchetto, Daniela ;
Correale, Loredana ;
Falchini, Massimo ;
Ferraris, Andrea ;
Gandini, Giovanni ;
Grazzini, Giulia ;
Iafrate, Franco ;
Iussich, Gabriella ;
Morra, Lia ;
Laghi, Andrea ;
Mascalchi, Mario ;
Regge, Daniele .
EUROPEAN RADIOLOGY, 2018, 28 (11) :4783-4791
[27]   Cancer Statistics, 2021 [J].
Siegel, Rebecca L. ;
Miller, Kimberly D. ;
Fuchs, Hannah E. ;
Jemal, Ahmedin .
CA-A CANCER JOURNAL FOR CLINICIANS, 2021, 71 (01) :7-33
[28]   Improved detection of pulmonary nodules on energy-subtracted chest radiographs with a commercial computer-aided diagnosis software: comparison with human observers [J].
Szucs-Farkas, Zsolt ;
Patak, Michael A. ;
Yuksel-Hatz, Seyran ;
Ruder, Thomas ;
Vock, Peter .
EUROPEAN RADIOLOGY, 2010, 20 (06) :1289-1296
[29]   Clinical Utility of Negative Multiparametric Magnetic Resonance Imaging in the Diagnosis of Prostate Cancer and Clinically Significant Prostate Cancer [J].
Wagaskar, Vinayak G. ;
Levy, Micah ;
Ratnani, Parita ;
Moody, Kate ;
Garcia, Mariely ;
Pedraza, Adriana M. ;
Parekh, Sneha ;
Pandav, Krunal ;
Shukla, Bhavya ;
Prasad, Sonya ;
Sobotka, Stanislaw ;
Haines, Kenneth, III ;
Punnen, Sanoj ;
Wiklund, Peter ;
Tewari, Ash .
EUROPEAN UROLOGY OPEN SCIENCE, 2021, 28 :9-16
[30]   Performance and Reading Time of Automated Breast US with or without Computer-aided Detection [J].
Yang, Shanling ;
Gao, Xican ;
Liu, Liwen ;
Shu, Rui ;
Yan, Jingru ;
Zhang, Ge ;
Xiao, Yao ;
Ju, Yan ;
Zhao, Ni ;
Song, Hongping .
RADIOLOGY, 2019, 292 (03) :540-549