An Intelligent Recognition Method for Low-Grade Fault Based on Attention Mechanism and Encoder-Decoder Network Structure

被引:5
作者
Zhang, Yujie [1 ]
Wang, Dongdong [1 ]
Ding, Renwei [1 ]
Yang, Jing [1 ]
Zhao, Lihong [1 ]
Zhao, Shuo [1 ]
Cai, Minghao [1 ]
Han, Tianjiao [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Earth Sci & Engn, Qingdao 266590, Peoples R China
基金
中国国家自然科学基金;
关键词
seismic data interpretation; attention mechanism; SE-UNet; low-grade fault; DEEP; ALGORITHM;
D O I
10.3390/en15218098
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Low-grade faults play an important role in controlling oil and gas accumulations, but their fault throw is small and difficult to identify. Traditional low-grade fault recognition methods are time-consuming and inaccurate. Therefore, this study proposes a combination of a simulated low-grade fault sample set and a self-constructed convolutional neural network to recognize low-grade faults. We used Wu's method to generate 500 pairs of low-grade fault samples to provide the data for deep learning. By combining the attention mechanism with UNet, an SE-UNet with efficient allocation of limited attention resources was constructed, which can select the features that are more critical to the current task objective from ample feature information, thus improving the expression ability of the network. The network model is applied to real data, and the results show that the SE-UNet model has better generalization ability and can better recognize low-grade and more continuous faults. Compared with the original UNet model, the SE-UNet model is more accurate and has more advantages in recognizing low-grade faults.
引用
收藏
页数:17
相关论文
共 44 条
  • [1] Aircraft Bleed Air System Fault Prediction based on Encoder-Decoder with Attention Mechanism
    Su, Siyu
    Sun, Youchao
    Peng, Chong
    Wang, Yifan
    EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY, 2023, 25 (03):
  • [2] An encoder-decoder network for crowd counting based on multi-scale attention mechanism
    Chuang H.-H.
    Chen Y.-C.
    Lin C.H.
    Multimedia Tools and Applications, 2025, 84 (03) : 1187 - 1210
  • [3] Land cover classification of synthetic aperture radar images based on encoder-decoder network with an attention mechanism
    Zheng, Nai-Rong
    Yang, Zi-An
    Shi, Xian-Zheng
    Zhou, Ruo-Yi
    Wang, Feng
    JOURNAL OF APPLIED REMOTE SENSING, 2022, 16 (01)
  • [4] Attention Based Encoder-decoder Network for Cardiac Semantic Segmentation
    Yuan, Xiaohan
    Zhu, Yinsu
    Wang, Yangang
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 4578 - 4582
  • [5] Enhanced Attention-Based Encoder-Decoder Framework for Text Recognition
    Prabu, S.
    Sundar, K. Joseph Abraham
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 35 (02) : 2071 - 2086
  • [6] Symmetry Encoder-Decoder Network with Attention Mechanism for Fast Video Object Segmentation
    Guo, Mingyue
    Zhang, Dejun
    Sun, Jun
    Wu, Yiqi
    SYMMETRY-BASEL, 2019, 11 (08):
  • [7] Recognition of complex power lines based on novel encoder-decoder network
    Li Y.
    Li H.
    Zhang K.
    Wang B.
    Guan S.
    Chen Y.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2024, 58 (06): : 1133 - 1141
  • [8] Attention-Based Encoder-Decoder Network for Prediction of Electromagnetic Scattering Fields
    Zhang, Ying
    He, Mang
    2022 IEEE 10TH ASIA-PACIFIC CONFERENCE ON ANTENNAS AND PROPAGATION, APCAP, 2022,
  • [9] A dual-stream encoder-decoder network with attention mechanism for saliency detection in video(s)
    Kumain, Sandeep Chand
    Singh, Maheep
    Awasthi, Lalit Kumar
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (03) : 2037 - 2046
  • [10] An attention-based row-column encoder-decoder model for text recognition in Japanese historical documents
    Ly, Nam Tuan
    Nguyen, Cuong Tuan
    Nakagawa, Masaki
    PATTERN RECOGNITION LETTERS, 2020, 136 : 134 - 141