Short-term Glucose Prediction based on Oral Glucose Tolerance Test Values

被引:0
作者
Dritsas, Elias [1 ]
Alexiou, Sotiris [1 ]
Konstantoulas, Ioannis [1 ]
Moustakas, Konstantinos [1 ]
机构
[1] Univ Patras, Dept Elect & Comp Engn, Rion 26504, Greece
来源
HEALTHINF: PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES - VOL 5: HEALTHINF | 2021年
基金
欧盟地平线“2020”;
关键词
OGTT; Glucose; Diabetes; Regression; Short-term Prediction; TYPE-2 DIABETES RISK; CLASSIFICATION; DEFINITION; DIAGNOSIS; MELLITUS; CURVE;
D O I
10.5220/0010974200003123
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Abnormal glucose metabolism increases the risk for cardiovascular disease and mortality. A key motivation for investigating this topic is Diabetes prevalence, which is the most common example of metabolic disorder that concern humans all over the world. The oral glucose tolerance test (OGTT) constitutes a traditional medical screening tool for all types of diabetes such as prediabetes, gestational, type 2 diabetes, insulin resistance or discrimination of Impaired Glucose Tolerance (IGT) from Natural Glucose Tolerance (NGT) individuals. Another motivation for this study is that a plethora of studies has shown the effectiveness of machine learning in glycemic control and improvement of diabetic's management. This research study aims to evaluate the adequacy of machine learning on the short-term prediction of glucose levels. The main contribution of this analysis is a Random Forest regression tree model which, has been trained considering various risk factors and glucose samples obtained by a 2-hour OGTT, after a fast and then after an oral intake of glucose, at intervals of 30 minutes. The research outcomes verify the efficacy of Random Forest (RF).
引用
收藏
页码:249 / 255
页数:7
相关论文
共 27 条
  • [1] Cardiovascular Disease and Type 2 Diabetes: Has the Dawn of a New Era Arrived?
    Abdul-Ghani, Muhammad
    DeFronzo, Ralph A.
    Del Prato, Stefano
    Chilton, Robert
    Singh, Rajvir
    Ryder, Robert E. J.
    [J]. DIABETES CARE, 2017, 40 (07) : 813 - 820
  • [2] Abu Rumman Refat Md, 2021, 2021 6th International Conference on Signal Processing, Computing and Control (ISPCC), P654, DOI 10.1109/ISPCC53510.2021.9609364
  • [3] Alberti KGMM, 1998, DIABETIC MED, V15, P539, DOI 10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO
  • [4] 2-S
  • [5] Alexiou S., 2021, 2021 6 SE EUR DES AU, P1
  • [6] Altuve M, 2016, IEEE ENG MED BIO, P5290, DOI 10.1109/EMBC.2016.7591921
  • [7] Modelling of OGTT curve identifies 1 h plasma glucose level as a strong predictor of incident type 2 diabetes: results from two prospective cohorts
    Alyass, Akram
    Almgren, Peter
    Akerlund, Mikael
    Dushoff, Jonathan
    Isomaa, Bo
    Nilsson, Peter
    Tuomi, Tiinamaija
    Lyssenko, Valeriya
    Groop, Leif
    Meyre, David
    [J]. DIABETOLOGIA, 2015, 58 (01) : 87 - 97
  • [8] Chronic Microvascular Complications in Prediabetic States-An Overview
    Baranowska-Jurkun, Angelika
    Matuszewski, Wojciech
    Bandurska-Stankiewicz, Elzbieta
    [J]. JOURNAL OF CLINICAL MEDICINE, 2020, 9 (10) : 1 - 21
  • [9] Bide P, 2020, INT CONF ADVAN COMPU, P1, DOI [10.1109/ICACCS48705.2020.9074202, 10.1109/icaccs48705.2020.9074202]
  • [10] 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study
    Bray, G. A.
    Chatellier, A.
    Duncan, C.
    Greenway, F. L.
    Levy, E.
    Ryan, D. H.
    Polonsky, K. S.
    Tobian, J.
    Ehrmann, D.
    Matulik, M. J.
    Clark, B.
    Czech, K.
    DeSandre, C.
    Hilbrich, R.
    McNabb, W.
    Semenske, A. R.
    Goldstein, B. J.
    Smith, K. A.
    Wildman, W.
    Pepe, C.
    Goldberg, R. B.
    Calles, J.
    Ojito, J.
    Castillo-Florez, S.
    Florez, H. J.
    Giannella, A.
    Lara, O.
    Veciana, B.
    Haffner, S. M.
    Montez, M. G.
    Lorenzo, C.
    Martinez, A.
    Hamman, R. F.
    Testaverde, L.
    Bouffard, A.
    Dabelea, D.
    Jenkins, T.
    Lenz, D.
    Perreault, L.
    Price, D. W.
    Steinke, S. C.
    Horton, E. S.
    Poirier, C. S.
    Swift, K.
    Caballero, E.
    Jackson, S. D.
    Lambert, L.
    Lawton, K. E.
    Ledbury, S.
    Kahn, S. E.
    [J]. LANCET, 2009, 374 (9702) : 1677 - 1686