Advances in lytic polysaccharide monooxygenases with the cellulose-degrading auxiliary activity family 9 to facilitate cellulose degradation for biorefinery

被引:14
作者
Long, Lingfeng [1 ]
Hu, Yun [1 ]
Sun, Fubao [1 ]
Gao, Wa [2 ]
Hao, Zhikui [3 ]
Yin, Heng [2 ]
机构
[1] Jiangnan Univ, Minist Educ, Sch Biotechnol, Key Lab Ind Biotechnol, Wuxi 214122, Peoples R China
[2] Chinese Acad Sci, Dalian Inst Chem Phys, Dalian Engn Res Ctr Carbohydrate Agr Preparat, Liaoning Prov Key Lab Carbohydrates, Dalian 116023, Peoples R China
[3] Taizhou Vocat & Tech Coll, Inst Appl Biotechnol, Sch Med & Pharmaceut Engn, Taizhou 318000, Peoples R China
基金
中国国家自然科学基金;
关键词
Auxiliary activity family 9 (AA9); Lytic polysaccharide monooxygenase (LPMO); Regioselectivity; Lignin and derivatives; Protein engineering; Lignocellulosic biorefinery; HYDROGEN-PEROXIDE FORMATION; ENZYMATIC-HYDROLYSIS; OXIDATIVE CLEAVAGE; OXYGEN ACTIVATION; ENZYMES; LIGNOCELLULOSE; MECHANISM; BINDING; SACCHARIFICATION; BIOCONVERSION;
D O I
10.1016/j.ijbiomac.2022.07.240
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
One crucial step in processing the recalcitrant lignocellulosic biomass is the fast hydrolysis of natural cellulose to fermentable sugars that can be subsequently converted to biofuels and bio-based chemicals. Recent studies have shown that lytic polysaccharide monooxygenase (LPMOs) with auxiliary activity family 9 (AA9) are capable of efficiently depolymerizing the crystalline cellulose via regioselective oxidation reaction. Intriguingly, the catalysis by AA9 LPMOs requires reductant to provide electrons, and lignin and its phenolic derivatives can be oxidized, releasing reductant to activate the reaction. The activity of AA9 LPMOs can be enhanced by in-situ generation of H2O2 in the presence of O-2. Although scientific understanding of these enzymes remains some-what unknown or controversial, structure modifications on AA9 LPMOs through protein engineering have emerged in recent years, which are prerequisite for their extensive applications in the development of cellulase-mediated lignocellulosic biorefinery processes. In this review, we critically comment on advances in studies for AA9 LPMOs, i.e., characteristic of AA9 LPMOs catalysis, external electron donors to AA9 LPMOs, especially the role of the oxidization of lignin and its derivatives, and AA9 LPMOs protein engineering as well as their extensive applications in the bioprocessing of lignocellulosic biomass. Perspectives are also highlighted for addressing the challenges.
引用
收藏
页码:68 / 83
页数:16
相关论文
共 146 条
  • [1] Distinct roles of N- and O-glycans in cellulase activity and stability
    Amore, Antonella
    Knott, Brandon C.
    Supekar, Nitin T.
    Shajahan, Asif
    Azadi, Parastoo
    Zhao, Peng
    Wells, Lance
    Linger, Jeffrey G.
    Hobdey, Sarah E.
    Vander Wall, Todd A.
    Shollenberger, Todd
    Yarbrough, John M.
    Tan, Zhongping
    Crowley, Michael F.
    Himmel, Michael E.
    Decker, Stephen R.
    Beckham, Gregg T.
    Taylor, Larry E., II
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (52) : 13667 - 13672
  • [2] Substrate specificity and regioselectivity of fungal AA9 lytic polysaccharide monooxygenases secreted by Podospora anserina
    Bennati-Granier, Chloe
    Garajova, Sona
    Champion, Charlotte
    Grisel, Sacha
    Haon, Mireille
    Zhou, Simeng
    Fanuel, Mathieu
    Ropartz, David
    Rogniaux, Helene
    Gimbert, Isabelle
    Record, Eric
    Berrin, Jean-Guy
    [J]. BIOTECHNOLOGY FOR BIOFUELS, 2015, 8
  • [3] Catalytic Mechanism of Fungal Lytic Polysaccharide Monooxygenases Investigated by First-Principles Calculations
    Bertini, Luca
    Breglia, Raffaella
    Lambrughi, Matteo
    Fantucci, Piercarlo
    De Gioia, Luca
    Borsari, Marco
    Sola, Marco
    Bortolotti, Carlo Augusto
    Bruschi, Maurizio
    [J]. INORGANIC CHEMISTRY, 2018, 57 (01) : 86 - 97
  • [4] Bissaro B, 2016, bioRxiv, DOI [10.1101/097022, 10.1101/097022, DOI 10.1101/097022]
  • [5] Controlled depolymerization of cellulose by light-driven lytic polysaccharide oxygenases
    Bissaro, Bastien
    Kommedal, Eirik
    Rohr, Asmund K.
    Eijsink, Vincent G. H.
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [6] Molecular mechanism of the chitinolytic peroxygenase reaction
    Bissaro, Bastien
    Streit, Bennett
    Isaksen, Ingvild
    Eijsink, Vincent G. H.
    Beckham, Gregg T.
    DuBois, Jennifer L.
    Rohr, Asmund K.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (03) : 1504 - 1513
  • [7] Oxidoreductases and Reactive Oxygen Species in Conversion of Lignocellulosic Biomass
    Bissaro, Bastien
    Varnai, Aniko
    Rohr, Asmund K.
    Eijsink, Vincent G. H.
    [J]. MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2018, 82 (04)
  • [8] How a Lytic Polysaccharide Monooxygenase Binds Crystalline Chitin
    Bissaro, Bastien
    Isaksen, Ingvild
    Vaaje-Kolstad, Gustav
    Eijsink, Vincent G. H.
    Rohr, Asmund K.
    [J]. BIOCHEMISTRY, 2018, 57 (12) : 1893 - 1906
  • [9] Bissaro B, 2017, NAT CHEM BIOL, V13, P1123, DOI [10.1038/NCHEMBIO.2470, 10.1038/nchembio.2470]
  • [10] Bissaro B, 2016, GREEN CHEM, V18, P5357, DOI [10.1039/C6GC01666A, 10.1039/c6gc01666a]