IMAGES OF QUANTUM REPRESENTATIONS OF MAPPING CLASS GROUPS AND DUPONT-GUICHARDET-WIGNER QUASI-HOMOMORPHISMS

被引:2
作者
Funar, Louis [1 ]
Pitsch, Wolfgang [2 ]
机构
[1] Univ Grenoble Alpes, Math, UMR 5582, Inst Fourier, CS 40700, F-38058 Grenoble 9, France
[2] Univ Autonoma Barcelona, Dept Matemat, Bellaterra 08193, Cerdanyola Del, Spain
关键词
symplectic group; pseudo-unitary group; Dupont Guichardet Wigner cocycle; quasi-homomorphism; group homology; mapping class group; central extension; quantum representation; BURAU REPRESENTATION; BOUNDED COHOMOLOGY; CENTRAL EXTENSIONS; FIELD THEORY; BRAID-GROUPS; LIE-GROUPS; TQFT; FAITHFULNESS; SUBGROUPS; HOMOLOGY;
D O I
10.1017/S147474801500047X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that either the images of the mapping class groups by quantum representations are not isomorphic to higher rank lattices or else the kernels have a large number of normal generators. Further, we show that the images of the mapping class groups have non-trivial 2-cohomology, at least for small levels. For this purpose, we considered a series of quasi-homomorphisms on mapping class groups extending the previous work of Barge and Ghys (Math. Ann. 294 (1992), 235-265) and of Gambaudo and Ghys (Bull. Soc. Math. France 133(4) (2005), 541-579). These quasi-homomorphisms are pull-backs of the Dupont Guichardet Wigner quasi-homomorphisms on pseudo-unitary groups along quantum representations.
引用
收藏
页码:277 / 304
页数:28
相关论文
共 50 条
[1]   A faithfulness criterion for the Gassner representation of the pure braid group [J].
Abdulrahim, MN .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (05) :1249-1257
[2]   Topological quantum field theory and the Nielsen-Thurston classification of M(0,4) [J].
Andersen, Jorgen Ellegaard ;
Masbaum, Gregor ;
Ueno, Kenji .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2006, 141 :477-488
[3]   Asymptotic faithfulness of the quantum SU(n) representations of the mapping class groups [J].
Andersen, Jorgen Ellegaard .
ANNALS OF MATHEMATICS, 2006, 163 (01) :347-368
[4]  
[Anonymous], 1982, GRADUATE TEXTS MATH
[5]  
[Anonymous], 1972, ANAL LINEAIRE ESPACE
[6]  
Arnold V I., 1970, Transactions of the Moscow Mathematical Society, V21, P30
[7]   EULER AND MASLOV COCYCLES [J].
BARGE, J ;
GHYS, E .
MATHEMATISCHE ANNALEN, 1992, 294 (02) :235-265
[8]   Bounded cohomology of subgroups of mapping class groups [J].
Bestvina, Mladen ;
Fujiwara, Koji .
GEOMETRY & TOPOLOGY, 2002, 6 :69-89
[9]   Topological quantum field theories derived from the Kauffman bracket [J].
Blanchet, C ;
Habegger, N ;
Masbaum, G ;
Vogel, P .
TOPOLOGY, 1995, 34 (04) :883-927
[10]  
Borel A., 2000, Mathematical Surveys and Monographs