Non-minimal order low-frequency H∞ filtering for uncertain discrete-time systems

被引:0
|
作者
Romao, Licio B. R. R. [1 ]
Frezzatto, Luciano [1 ]
de Oliveira, Mauricio C. [2 ]
Oliveira, Ricardo C. L. F. [1 ]
Peres, Pedro L. D. [1 ]
机构
[1] Univ Estadual Campinas, Sch Elect & Comp Engn, UNICAMP, BR-13083852 Campinas, SP, Brazil
[2] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA
来源
IFAC PAPERSONLINE | 2017年 / 50卷 / 01期
基金
巴西圣保罗研究基金会;
关键词
Robust linear matrix inequalities; Filtering; Generalized Kalman-Yakubovich-Popov Lemma; Low-frequency Specifications; Linear time-invariant uncertain systems; GENERALIZED KYP LEMMA; LINEAR-SYSTEMS; DESIGN;
D O I
10.1016/j.ifacol.2017.08.1044
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a sufficient condition for the discrete-time robust H-infinity filtering design problem with low-frequency specifications using an extension of the generalized Kalman-Yakubovich-Popov lemma The matrices of the system are supposed to be uncertain, time-invariant and to belong to a polytopic domain The proposed approach takes advantage of a non-minimal filter structure, that is, a filter with order greater than the order of the system being filtered, to provide improved H-infinity bounds for low-frequency specifications. The condition can be solved by means of linear matrix inequality relaxations with slack variables and Lyapunov matrices which are considered as homogeneous polynomials of arbitrary degree. Numerical examples illustrate the improvements on the bounds provided by the non-minimal filter structure in combination with the more accurate polynomial approximations (higher degrees) for the optimization variables. (C) 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:6477 / 6482
页数:6
相关论文
共 50 条
  • [1] Robust non-minimal order filter and smoother design for discrete-time uncertain systems
    Frezzatto, Luciano
    de Oliveira, Mauricio
    Oliveira, Ricardo C. L. F.
    Peres, Pedro L. D.
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2017, 27 (04) : 661 - 678
  • [2] Fault detection for discrete-time uncertain LPV systems using non-minimal order filter
    Zhang, Zhi-Hui
    Yang, Guang-Hong
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2018, 355 (02): : 902 - 921
  • [3] Finite Frequency H∞ Filtering for Discrete-Time Uncertain Systems
    El-Amrani, A.
    Berrada, Y.
    Hmamed, A.
    El Hajjaji, A.
    Boumhidi, I.
    2017 14TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS & DEVICES (SSD), 2017, : 580 - 585
  • [4] Finite Frequency H∞ Filtering for Uncertain Discrete-time Switched Linear Systems
    Ding, Da-Wei
    Yang, Guang-Hong
    2009 IEEE CONTROL APPLICATIONS CCA & INTELLIGENT CONTROL (ISIC), VOLS 1-3, 2009, : 1087 - 1092
  • [6] Finite frequency H∞ filtering for uncertain discrete-time switched linear systems
    Ding, Dawei
    Yang, Guanghong
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2009, 19 (11) : 1625 - 1633
  • [7] Minimal and non-minimal optimal fixed-order compensators for time-varying discrete-time systems
    Van Willigenburg, LG
    De Koning, WL
    AUTOMATICA, 2002, 38 (01) : 157 - 165
  • [8] Gain-scheduled H2 non-minimal order filtering design for linear parameter-varying discrete-time systems
    Frezzatto, Luciano
    de Oliveira, Mauricio C.
    Oliveira, Ricardo C. L. F.
    Peres, Pedro L. D.
    IFAC PAPERSONLINE, 2017, 50 (01): : 11391 - 11396
  • [9] Robust H∞ filtering for uncertain discrete-time descriptor systems
    Sahereh Beidaghi
    Ali Akbar Jalali
    Ali Khaki Sedigh
    Bijan Moaveni
    International Journal of Control, Automation and Systems, 2017, 15 : 995 - 1002
  • [10] Robust H∞ Filtering for Uncertain Discrete-time Descriptor Systems
    Beidaghi, Sahereh
    Jalali, Ali Akbar
    Sedigh, Ali Khaki
    Moaveni, Bijan
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2017, 15 (03) : 995 - 1002