Viscosity of colloidal suspensions

被引:107
作者
Verberg, R [1 ]
deSchepper, IM [1 ]
Cohen, EGD [1 ]
机构
[1] ROCKEFELLER UNIV, NEW YORK, NY 10021 USA
关键词
D O I
10.1103/PhysRevE.55.3143
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Simple expressions are given for the Newtonian viscosity eta(N)(phi) as well as the viscoelastic behavior of the viscosity eta(phi,omega) of neutral monodisperse hard-sphere colloidal suspensions as a function of volume fraction phi and frequency omega over the entire fluid range, i.e., for volume fractions 0 < phi < 0.55. These expressions are based on an approximate theory that considers the viscosity as composed as the sum of two relevant physical processes: eta(phi,omega) = eta(infinity)(phi) + eta(cd)(phi,omega), where eta(infinity)(phi) = eta(0) chi(phi) is the infinite frequency (or very short time) viscosity, with eta 0 the solvent viscosity, chi(phi) the equilibrium hard-sphere radial distribution function at contact, and eta(cd)(phi,omega) the contribution due to the diffusion of the colloidal particles out of cages formed by their neighbors, on the Peclet time scale tau(P), the dominant physical process in concentrated colloidal suspensions. The Newtonian viscosity eta(N)(phi) = eta(phi, omega = 0) agrees very well with the extensive experiments of van der Werff et al., [Phys. Rev. A 39, 795 (1989); J. Rheol. 33, 421 (1989)] and others. Also, the asymptotic behavior for large omega is of the form eta(infinity)(phi) + eta(0)A(phi)(omega tau(P))(-1/2), in agreement with these experiments, but the theoretical coefficient A(phi) differs by a constant factor 2/(chi)(phi) from the exact coefficient, computed from the Green-Kubo formula for eta(phi,omega). This still enables us to predict for practical purposes the viscoelastic behavior of monodisperse spherical colloidal suspensions for all volume fractions by a simple time rescaling.
引用
收藏
页码:3143 / 3158
页数:16
相关论文
共 50 条
  • [21] Convection in colloidal suspensions with particle-concentration-dependent viscosity
    M. Glässl
    M. Hilt
    W. Zimmermann
    [J]. The European Physical Journal E, 2010, 32 : 265 - 272
  • [22] Square root singularity in the viscosity of neutral colloidal suspensions at large frequencies
    R. Verberg
    I. M. de Schepper
    M. J. Feigenbaum
    E. G. D. Cohen
    [J]. Journal of Statistical Physics, 1997, 87 : 1037 - 1049
  • [23] Viscosity and diffusion of concentrated hard-sphere-like colloidal suspensions
    Verberg, R
    De Schepper, IM
    Cohen, EGD
    [J]. DYNAMICS: MODELS AND KINETIC METHODS FOR NON-EQUILIBRIUM MANY BODY SYSTEMS, 2000, 371 : 39 - 64
  • [24] Square root singularity in the viscosity of neutral colloidal suspensions at large frequencies
    Verberg, R
    deSchepper, IM
    Feigenbaum, MJ
    Cohen, EGD
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1997, 87 (5-6) : 1037 - 1049
  • [25] Dynamic viscosity of colloidal silica suspensions at low and high volume fractions
    Samavat, Siamak
    Carrique, Felix
    Ruiz-Reina, Emilio
    Zhang, Wei
    Williams, Paul Melvyn
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2019, 537 : 640 - 651
  • [26] New Generalized Viscosity Model for Non-Colloidal Suspensions and Emulsions
    Pal, Rajinder
    [J]. FLUIDS, 2020, 5 (03)
  • [27] A model for the shear viscosity of non-colloidal suspensions with Newtonian matrix fluids
    Kostas D. Housiadas
    Roger I. Tanner
    [J]. Rheologica Acta, 2014, 53 : 831 - 841
  • [28] Sedimentation of bidisperse, uncharged colloidal sphere suspensions: Influence of viscosity and irregular surfaces
    ThiesWeesie, DME
    Philipse, AP
    Lekkerkerker, HNW
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1996, 177 (02) : 427 - 438
  • [29] Viscosity of liquid suspensions with fractal aggregates: Magnetic nanoparticles in petroleum colloidal structures
    Lesin, V. I.
    Koksharov, Yu A.
    Khomutov, G. B.
    [J]. COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2011, 392 (01) : 88 - 94