Face Detection Method in Surveillance Systems Using Haar Feature and Deep Neural Network

被引:0
作者
Tin Trung Thai [1 ]
Duc Tuan Nguyen [2 ]
机构
[1] Vietnam Natl Univ, Sch Comp Sci & Engn, Int Univ, Ho Chi Minh City, Vietnam
[2] Vietnam Natl Univ, Sch Elect Engn, Int Univ, Ho Chi Minh City, Vietnam
来源
PROCEEDINGS OF 2019 6TH NATIONAL FOUNDATION FOR SCIENCE AND TECHNOLOGY DEVELOPMENT (NAFOSTED) CONFERENCE ON INFORMATION AND COMPUTER SCIENCE (NICS) | 2019年
关键词
face detection; surveillance system; background subtraction; single shot multibox detection(SSD) face detector;
D O I
10.1109/nics48868.2019.9023868
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Face detection is one of the most widespread applications in the modern world society. Tremendous strides have been made to improve the performance of face detection, however, accuracy and efficiency of face localization in the wild remains an open challenge. This paper presents an efficient method for face detection in a surveillance system. The proposed method combines traditional computer vision method and modern technique. The method has been experimented under several datasets to evaluate the accuracy and efficiency of face localization. The result achieves 96.66% and 26.85 frame per second.
引用
收藏
页码:434 / 438
页数:5
相关论文
共 29 条
[1]   Multiple face detection algorithm using colour skin modelling [J].
Amjad, A. ;
Griffiths, A. ;
Patwary, M. N. .
IET IMAGE PROCESSING, 2012, 6 (08) :1093-1101
[2]  
Angulo J., 2017, MATH MORPHOLOGY ITS, V10225
[3]  
[Anonymous], 2017, IEEE T PATTERN ANAL
[4]  
Berg T.L., 2004, Neural Information Processing Systems
[5]  
Dalal N., 2005 IEEE COMP SOC C, V1
[6]  
Dang K., 2017, 2017 7 INT C CLOUD C
[7]   Efficient graph-based image segmentation [J].
Felzenszwalb, PF ;
Huttenlocher, DP .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2004, 59 (02) :167-181
[8]  
Girshick R., 2015, 2015 IEEE INT C COMP
[9]  
Girshick R., 2014, IEEE COMP SOC C COMP, DOI [10.1109/CVPR.2014.81, DOI 10.1109/CVPR.2014.81]
[10]  
Ha S. Viet-Uyen, 2018, IET COMPUT VIS