LIMIT MEASURES OF STOCHASTIC SCHRO spacing diaeresis DINGER LATTICE SYSTEMS

被引:25
作者
Chen, Zhang [1 ]
Wang, Bixiang [2 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
[2] New Mexico Inst Min & Technol, Dept Math, Socorro, NM 87801 USA
关键词
Stochastic Schrodinger lattice system; nonlinear noise; invariant mea-sure; tail-estimate; limit measure; DYNAMICAL-SYSTEMS; TRAVELING-WAVES; ATTRACTORS;
D O I
10.1090/proc/15769
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the existence of invariant measures and their limiting behavior of the stochastic Schro center dot dinger lattice systems with respect to noise intensity. We prove the set of all invariant measures of the stochastic systems is weakly compact when the noise intensity varies in a bounded interval. We further show any limit of a sequence of invariant measures of the perturbed systems must be an invariant measure of the limiting system.
引用
收藏
页码:1669 / 1684
页数:16
相关论文
共 30 条
[1]   Attractors of non-autonomous stochastic lattice systems in weighted spaces [J].
Bates, Peter W. ;
Lu, Kening ;
Wang, Bixiang .
PHYSICA D-NONLINEAR PHENOMENA, 2014, 289 :32-50
[2]   Attractors for Stochastic lattice dynamical systems [J].
Bates, PW ;
Lisei, H ;
Lu, KN .
STOCHASTICS AND DYNAMICS, 2006, 6 (01) :1-21
[3]   Traveling waves of bistable dynamics on a lattice [J].
Bates, PW ;
Chen, XF ;
Chmaj, AJJ .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2003, 35 (02) :520-546
[4]   A discrete convolution model for phase transitions [J].
Bates, PW ;
Chmaj, A .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1999, 150 (04) :281-305
[5]   SOME THRESHOLD RESULTS FOR MODELS OF MYELINATED NERVES [J].
BELL, J .
MATHEMATICAL BIOSCIENCES, 1981, 54 (3-4) :181-190
[6]   Synchronization of stochastic lattice equations [J].
Bessaih, Hakima ;
Garrido-Atienza, Maria J. ;
Koepp, Verena ;
Schmalfuss, Bjoern ;
Yang, Meihua .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2020, 27 (04)
[7]   STOCHASTIC LATTICE DYNAMICAL SYSTEMS WITH FRACTIONAL NOISE [J].
Bessaih, Hakima ;
Garrido-Atienza, Maria J. ;
Han, Xiaoying ;
Schmalfuss, Bjoern .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (02) :1495-1518
[8]   Attractors of Reaction Diffusion Systems on Infinite Lattices [J].
W.-J. Beyn ;
S. Yu Pilyugin .
Journal of Dynamics and Differential Equations, 2003, 15 (2-3) :485-515
[9]   ASYMPTOTIC BEHAVIOUR OF A LOGISTIC LATTICE SYSTEM [J].
Caraballo, Tomas ;
Morillas, Francisco ;
Valero, Jose .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (10) :4019-4037
[10]   Attractors of stochastic lattice dynamical systems with a multiplicative noise and non-Lipschitz nonlinearities [J].
Caraballo, Tomas ;
Morillas, F. ;
Valero, J. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (02) :667-693