Coalescence cascade of dissipative solitons in parametrically driven systems

被引:17
作者
Clerc, M. G. [1 ]
Coulibaly, S. [2 ]
Gordillo, L. [1 ]
Mujica, N. [1 ]
Navarro, R. [1 ]
机构
[1] Univ Chile, Fac Ciencias Fis & Matemat, Dept Fis, Santiago, Chile
[2] Univ Sci & Tech Lille Flandres Artois, CNRS, Lab Phys Lasers Atomes & Mol, UMR 8523, F-59655 Villeneuve Dascq EU, France
关键词
NONLINEAR DISPERSIVE CAVITY; SOLITARY WAVES; INSTABILITIES; PATTERNS;
D O I
10.1103/PhysRevE.84.036205
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Parametrically driven spatially extended systems exhibit uniform oscillations which are modulationally unstable. The resulting periodic state evolves to the creation of a gas of dissipative solitons. Driven by the interaction of dissipative solitons, the multisoliton state undergoes a cascade of coalescence processes, where the average soliton separation distance obeys a temporal self-similar law. Starting from the soliton pair interaction law, we have derived analytically and characterized the law of this multisoliton coarsening process. A comparison of numerical results obtained with different models such as the parametrically driven damped nonlinear Schrodinger equation, a vertically driven chain of pendula, and a parametrically forced magnetic wire, shows remarkable agreement. Both phenomena, the pair interaction law and the coarsening process, are also observed experimentally in a quasi-one-dimensional layer of Newtonian fluid which is oscillated vertically.
引用
收藏
页数:10
相关论文
共 47 条
[11]   STABILITY DIAGRAM OF THE PHASE-LOCKED SOLITONS IN THE PARAMETRICALLY DRIVEN, DAMPED NONLINEAR SCHRODINGER-EQUATION [J].
BARASHENKOV, IV ;
BOGDAN, MM ;
KOROBOV, VI .
EUROPHYSICS LETTERS, 1991, 15 (02) :113-118
[12]   The stationary instability in quasi-reversible systems and the Lorenz pendulum [J].
Clerc, M ;
Coullet, P ;
Tirapegui, E .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (03) :591-603
[13]   Lorenz bifurcation: Instabilities in quasireversible systems [J].
Clerc, M ;
Coullet, P ;
Tirapegui, E .
PHYSICAL REVIEW LETTERS, 1999, 83 (19) :3820-3823
[14]   The Maxwell-Bloch description of 1/1 resonances [J].
Clerc, M ;
Coullet, P ;
Tirapegui, E .
OPTICS COMMUNICATIONS, 1999, 167 (1-6) :159-164
[15]  
Clerc M, 2000, PROG THEOR PHYS SUPP, P337, DOI 10.1143/PTPS.139.337
[16]   Localized states beyond the asymptotic parametrically driven amplitude equation [J].
Clerc, M. G. ;
Coulibaly, S. ;
Laroze, D. .
PHYSICAL REVIEW E, 2008, 77 (05)
[17]   Soliton pair interaction law in parametrically driven Newtonian fluid [J].
Clerc, M. G. ;
Coulibaly, S. ;
Mujica, N. ;
Navarro, R. ;
Sauma, T. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 367 (1901) :3213-3226
[18]   Localized states and non-variational Ising-Bloch transition of a parametrically driven easy-plane ferromagnetic wire [J].
Clerc, Marcel G. ;
Coulibaly, Saliya ;
Laroze, David .
PHYSICA D-NONLINEAR PHENOMENA, 2010, 239 (1-2) :72-86
[19]   NONVARIATIONAL ISING-BLOCH TRANSITION IN PARAMETRICALLY DRIVEN SYSTEMS [J].
Clerc, Marcel G. ;
Coulibaly, Saliya ;
Laroze, David .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (08) :2717-2726
[20]   Quasi-reversible instabilities of closed orbits [J].
Clerc, MG ;
Coullet, P ;
Vandenberghe, N ;
Tirapegui, E .
PHYSICS LETTERS A, 2001, 287 (3-4) :198-204