Complexity of hierarchical refinement for a class of admissible mesh configurations

被引:25
作者
Buffa, Annalisa [1 ]
Giannelli, Carlotta [2 ]
Morgenstern, Philipp [3 ]
Peterseim, Daniel [3 ]
机构
[1] CNR, Ist Matemat Applicata & Tecnol Informat E Magenes, Via Ferrata 1, I-27100 Pavia, Italy
[2] Univ Firenze, Dipartimento Matemat & Informat U Dini, Viale Morgagni 67-A, I-50134 Florence, Italy
[3] Univ Bonn, Inst Numer Simulat, Wegelerstr 6, D-53115 Bonn, Germany
基金
欧洲研究理事会;
关键词
Hierarchical splines; THB-splines; Adaptivity; Isogeometric analysis; ADAPTIVE ISOGEOMETRIC ANALYSIS; OPTIMAL CONVERGENCE RATE; FINITE-ELEMENT METHODS; POLYNOMIAL SPLINES;
D O I
10.1016/j.cagd.2016.04.003
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
An adaptive isogeometric method based on d-variate hierarchical spline constructions can be derived by considering a refine module that preserves a certain class of admissibility between two consecutive steps of the adaptive loop (Buffa and Giannelli, 2016). In this paper we provide a complexity estimate, i.e., an estimate on how the number of mesh elements grows with respect to the number of elements that are marked for refinement by the adaptive strategy. Our estimate is in the line of the similar ones proved in the context of adaptive finite element methods. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:83 / 92
页数:10
相关论文
共 26 条
[1]   Isogeometric analysis using T-splines [J].
Bazilevs, Y. ;
Calo, V. M. ;
Cottrell, J. A. ;
Evans, J. A. ;
Hughes, T. J. R. ;
Lipton, S. ;
Scott, M. A. ;
Sederberg, T. W. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (5-8) :229-263
[2]   Adaptive finite element methods with convergence rates [J].
Binev, P ;
Dahmen, W ;
DeVore, R .
NUMERISCHE MATHEMATIK, 2004, 97 (02) :219-268
[3]   QUASI-OPTIMAL CONVERGENCE RATE OF AN ADAPTIVE DISCONTINUOUS GALERKIN METHOD [J].
Bonito, Andrea ;
Nochetto, Ricardo H. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (02) :734-771
[4]   Some properties of LR-splines [J].
Bressan, Andrea .
COMPUTER AIDED GEOMETRIC DESIGN, 2013, 30 (08) :778-794
[5]   Adaptive isogeometric methods with hierarchical splines: Error estimator and convergence [J].
Buffa, Annalisa ;
Giannelli, Carlotta .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2016, 26 (01) :1-25
[6]   Axioms of adaptivity [J].
Carstensen, C. ;
Feischl, M. ;
Page, M. ;
Praetorius, D. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 67 (06) :1195-1253
[7]   Quasi-optimal convergence rate for an adaptive finite element method [J].
Cascon, J. Manuel ;
Kreuzer, Christian ;
Nochetto, Ricardo H. ;
Siebert, Kunibert G. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (05) :2524-2550
[8]  
Cottrell J.A., 2009, Isogeometric Analysis: Towards Unification of Computer Aided Design and Finite Element Analysis
[9]   Mathematical analysis of variational isogeometric methods [J].
da Veiga, L. Beirao ;
Buffa, A. ;
Sangalli, G. ;
Vazquez, R. .
ACTA NUMERICA, 2014, 23 :157-287
[10]   Polynomial splines over hierarchical T-meshes [J].
Deng, Jiansong ;
Chen, Falai ;
Li, Xin ;
Hu, Changqi ;
Tong, Weihua ;
Yang, Zhouwang ;
Feng, Yuyu .
GRAPHICAL MODELS, 2008, 70 (76-86) :76-86