Urine proteomics identifies biomarkers for diabetic kidney disease at different stages

被引:21
|
作者
Fan, Guanjie [1 ,2 ,3 ,4 ]
Gong, Tongqing [5 ]
Lin, Yuping [1 ,2 ,3 ,4 ]
Wang, Jianping [6 ,7 ]
Sun, Lu [1 ,2 ,3 ,4 ]
Wei, Hua [1 ,2 ,3 ,4 ]
Yang, Xing [5 ]
Liu, Zhenjie [1 ,2 ,3 ,4 ]
Li, Xinliang [5 ]
Zhao, Ling [1 ,2 ,3 ,4 ]
Song, Lan [6 ]
He, Jiali [1 ,2 ,3 ,4 ]
Liu, Haibo [5 ]
Li, Xiuming [1 ,2 ,3 ,4 ]
Liu, Lifeng [5 ]
Li, Anxiang [1 ,2 ,3 ,4 ]
Lu, Qiyun [1 ,2 ,3 ,4 ]
Zou, Dongyin [1 ,2 ,3 ,4 ]
Wen, Jianxuan [1 ,2 ,3 ,4 ]
Xia, Yaqing [1 ,2 ,3 ,4 ]
Wu, Liyan [1 ,2 ,3 ,4 ]
Huang, Haoyue [1 ,2 ,3 ,4 ]
Zhang, Yuan [1 ,2 ,3 ,4 ]
Xie, Wenwen [1 ,2 ,3 ,4 ]
Huang, Jinzhu [1 ,2 ,3 ,4 ]
Luo, Lulu [1 ,2 ,3 ,4 ]
Wu, Lulu [1 ,2 ,3 ,4 ]
He, Liu [1 ,2 ,3 ,4 ]
Liang, Qingshun [1 ,2 ,3 ,4 ]
Chen, Qubo [1 ,2 ,3 ,4 ]
Chen, Guowei [1 ,2 ,3 ,4 ]
Bai, Mingze [6 ,7 ]
Qin, Jun [6 ]
Ni, Xiaotian [6 ]
Tang, Xianyu [1 ,2 ,3 ,4 ]
Wang, Yi [6 ]
机构
[1] Guangzhou Univ Chinese Med, Affiliated Hosp 2, Guangzhou 510120, Peoples R China
[2] Univ Chinese Med, Clin Coll Guangzhou 2, Guangzhou 510120, Peoples R China
[3] Guangdong Prov Hosp Chinese Med, Guangzhou 510120, Peoples R China
[4] Guangdong Prov Acad Chinese Med Sci, Guangzhou 510120, Peoples R China
[5] Beijing Pineal Hlth Management Co Ltd, Beijing 102206, Peoples R China
[6] Beijing Proteome Res Ctr, Natl Ctr Prot Sci, Inst Life, State Key Lab Prote, Beijing 102206, Peoples R China
[7] Chongqing Univ Posts & Telecommun, Sch Bioinformat, Chongqing Key Lab Big Data Bio Intelligence, Chongqing 400065, Peoples R China
关键词
Urine; Proteomics; DKD; Progression monitoring; RENAL-DISEASE; DIAGNOSIS; MORTALITY; MELLITUS; RISK;
D O I
10.1186/s12014-021-09338-6
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background Type 2 diabetic kidney disease is the most common cause of chronic kidney diseases (CKD) and end-stage renal diseases (ESRD). Although kidney biopsy is considered as the 'gold standard' for diabetic kidney disease (DKD) diagnosis, it is an invasive procedure, and the diagnosis can be influenced by sampling bias and personal judgement. It is desirable to establish a non-invasive procedure that can complement kidney biopsy in diagnosis and tracking the DKD progress. Methods In this cross-sectional study, we collected 252 urine samples, including 134 uncomplicated diabetes, 65 DKD, 40 CKD without diabetes and 13 follow-up diabetic samples, and analyzed the urine proteomes with liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). We built logistic regression models to distinguish uncomplicated diabetes, DKD and other CKDs. Results We quantified 559 +/- 202 gene products (GPs) (Mean +/- SD) on a single sample and 2946 GPs in total. Based on logistic regression models, DKD patients could be differentiated from the uncomplicated diabetic patients with 2 urinary proteins (AUC = 0.928), and the stage 3 (DKD3) and stage 4 (DKD4) DKD patients with 3 urinary proteins (AUC = 0.949). These results were validated in an independent dataset. Finally, a 4-protein classifier identified putative pre-DKD3 patients, who showed DKD3 proteomic features but were not diagnosed by clinical standards. Follow-up studies on 11 patients indicated that 2 putative pre-DKD patients have progressed to DKD3. Conclusions Our study demonstrated the potential for urinary proteomics as a noninvasive method for DKD diagnosis and identifying high-risk patients for progression monitoring.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Urine proteomics identifies biomarkers for diabetic kidney disease at different stages
    Guanjie Fan
    Tongqing Gong
    Yuping Lin
    Jianping Wang
    Lu Sun
    Hua Wei
    Xing Yang
    Zhenjie Liu
    Xinliang Li
    Ling Zhao
    Lan Song
    Jiali He
    Haibo Liu
    Xiuming Li
    Lifeng Liu
    Anxiang Li
    Qiyun Lu
    Dongyin Zou
    Jianxuan Wen
    Yaqing Xia
    Liyan Wu
    Haoyue Huang
    Yuan Zhang
    Wenwen Xie
    Jinzhu Huang
    Lulu Luo
    Lulu Wu
    Liu He
    Qingshun Liang
    Qubo Chen
    Guowei Chen
    Mingze Bai
    Jun Qin
    Xiaotian Ni
    Xianyu Tang
    Yi Wang
    Clinical Proteomics, 2021, 18
  • [2] Human Kidney Proteomics Identifies Biomarkers Associated with Kidney Function in Patients with Diabetic Kidney Disease
    Abedini, Amin
    Moon, Salina
    Niewczas, Monika A.
    Susztak, Katalin
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2021, 32 (10): : 260 - 260
  • [3] Urine Biomarkers for Diabetic Kidney Disease Progression
    Schrauben, Sarah J.
    Ix, Joachim H.
    Shlipak, Michael
    Dobre, Mirela A.
    Gutierrez, Orlando M.
    Sarnak, Mark J.
    Ricardo, Ana C.
    Coca, Steven G.
    Greenberg, Jason Henry
    Waikar, Sushrut S.
    Parikh, Chirag R.
    Cohen, Debbie L.
    Hsu Chi-yuan
    Taliercio, Jonathan J.
    Schelling, Jeffrey R.
    Rao, Panduranga S.
    Kimmel, Paul L.
    Bonventre, Joseph V.
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2024, 35 (10):
  • [4] Urine Proteomics Identifies Novel Biomarkers of IPF Disease Progression and Resolution
    Decaris, M.
    Rexhepaj, M.
    Vowinckel, J.
    Dupuis, N.
    Wei, Y.
    Hariri, L. P.
    Greenland, J. R.
    Chapman, H. A.
    Lee, J. S.
    Wolters, P. J.
    Turner, S.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2019, 199
  • [5] Urine Proteomics and Biomarkers in Renal Disease
    Kim, Min Jeong
    Frankel, Andrew H.
    Tam, Frederick W. K.
    NEPHRON EXPERIMENTAL NEPHROLOGY, 2011, 119 (01): : E1 - E7
  • [6] Urine metabolomics reveals biomarkers and the underlying pathogenesis of diabetic kidney disease
    Luo, Maolin
    Zhang, Zeyu
    Lu, Yongping
    Feng, Weifeng
    Wu, Hongwei
    Fan, Lijing
    Guan, Baozhang
    Dai, Yong
    Tang, Donge
    Dong, Xiangnan
    Yun, Chen
    Hocher, Berthold
    Liu, Haiping
    Li, Qiang
    Yin, Lianghong
    INTERNATIONAL UROLOGY AND NEPHROLOGY, 2023, 55 (04) : 1001 - 1013
  • [7] Urine metabolomics reveals biomarkers and the underlying pathogenesis of diabetic kidney disease
    Maolin Luo
    Zeyu Zhang
    Yongping Lu
    Weifeng Feng
    Hongwei Wu
    Lijing Fan
    Baozhang Guan
    Yong Dai
    Donge Tang
    Xiangnan Dong
    Chen Yun
    Berthold Hocher
    Haiping Liu
    Qiang Li
    Lianghong Yin
    International Urology and Nephrology, 2023, 55 : 1001 - 1013
  • [8] Study on biomarkers of patients with dampness syndrome and diabetic kidney disease in different clinical stages based on metabonomics
    张燕媚
    China Medical Abstracts(Internal Medicine), 2023, 40 (02) : 76 - 77
  • [9] Identification of biomarkers for Fabry disease by urine proteomics
    Kistler, A. D.
    Mischak, H.
    Breunig, F.
    Hughes, D. A.
    Barbey, F.
    Wuthrich, R. P.
    Serra, A. L.
    INTERNATIONAL JOURNAL OF CLINICAL PHARMACOLOGY AND THERAPEUTICS, 2010, 48 : S62 - S62
  • [10] Biomarkers of diabetic kidney disease
    Colhoun, Helen M.
    Marcovecchio, M. Loredana
    DIABETOLOGIA, 2018, 61 (05) : 996 - 1011