Solvability of differential equations on open subsets of the Sierpinski gasket

被引:3
|
作者
Pelander, Anders [1 ]
机构
[1] Uppsala Univ, Dept Math, SE-75106 Uppsala, Sweden
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2007年 / 102卷 / 1期
关键词
Open Subset; Matching Condition; Fractal Differential Equation; Normal Derivative; Iterate Function System;
D O I
10.1007/s11854-007-0025-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give necessary and sufficient conditions on the polynomial p for the differential equation p(Delta)u = f, based on the Laplacian, to be solvable on any open subset of the Sierpinski gasket for any f continuous on that subset. For general p, we find the open subsets on which p(Delta)u = f is solvable for any continuous f.
引用
收藏
页码:359 / 369
页数:11
相关论文
共 50 条
  • [1] Solvability of differential equations on open subsets of the Sierpiński gasket
    Anders Pelander
    Journal d'Analyse Mathématique, 2007, 102
  • [2] Fractal differential equations on the Sierpinski gasket
    Dalrymple, K
    Strichartz, RS
    Vinson, JP
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1999, 5 (2-3) : 203 - 284
  • [3] Fractal differential equations on the Sierpinski gasket
    Kyallee Dalrymple
    Robert S. Strichartz
    Jade P. Vinson
    Journal of Fourier Analysis and Applications, 1999, 5 : 203 - 284
  • [4] Backward problems for stochastic differential equations on the Sierpinski gasket
    Liu, Xuan
    Qian, Zhongmin
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2018, 128 (10) : 3387 - 3418
  • [5] Moran subsets of discrete Sierpinski gasket☆
    Du, Caimin
    Yao, Yiqi
    Xi, Lifeng
    CHAOS SOLITONS & FRACTALS, 2025, 190
  • [6] Eikonal equations on the Sierpinski gasket
    Camilli, Fabio
    Capitanelli, Raffaela
    Marchi, Claudio
    MATHEMATISCHE ANNALEN, 2016, 364 (3-4) : 1167 - 1188
  • [7] Eikonal equations on the Sierpinski gasket
    Fabio Camilli
    Raffaela Capitanelli
    Claudio Marchi
    Mathematische Annalen, 2016, 364 : 1167 - 1188
  • [8] A class of semilinear elliptic equations on the Sierpinski gasket
    Kar, Rasmita
    Badajena, A. K.
    APPLICABLE ANALYSIS, 2021, 100 (15) : 3212 - 3219
  • [9] Variational treatment of nonlinear equations on the Sierpinski gasket
    Stancu-Dumitru, Denisa
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2014, 59 (02) : 172 - 189
  • [10] TOPOLOGICAL INDICES OF SIERPINSKI GASKET AND SIERPINSKI GASKET RHOMBUS GRAPHS
    Padmapriya, P.
    Mathad, Veena
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2022, 12 (01): : 136 - 148