RNA-Guided RNA modification: functional organization of the archaeal H/ACA RNP

被引:107
作者
Baker, DL [1 ]
Youssef, OA [1 ]
Chastkofsky, MIR [1 ]
Dy, DA [1 ]
Terns, RM [1 ]
Terns, MP [1 ]
机构
[1] Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA
关键词
noncoding RNA; RNA modification; RNA-protein complex; archaea; pseudouridylation;
D O I
10.1101/gad.1309605
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
In eukaryotes and archaea, uridines in various RNAs are converted to pseudouridines by RNA-guided RNA modification complexes termed H/ACA RNPs. Guide RNAs within the complexes base-pair with target RNAs to direct modification of specific ribonucleotides. Cbf5, a protein component of the complex, likely catalyzes the modification. However, little is known about the organization of H/ACA RNPs and the roles of the multiple proteins thought to comprise the complexes. We have reconstituted functional archaeal H/ACA RNPs from recombinant components, defined the components necessary and sufficient for function, and determined the direct RNA-protein and protein-protein interactions that occur between the components. The results provide substantial insight into the functional organization of this RNP. The functional complex requires a guide RNA and each of four proteins: Cbf5, Gar1, L7Ae, and Nop10. Two proteins interact directly with the guide RNA: L7Ae and Cbf5. L7Ae does not interact with other H/ACA RNP proteins in the absence of the RNA. We have defined two novel functions for Cbf5. Cbf5 is the protein that specifically recognizes and binds H/ACA guide RNAs. In addition, Cbf5 recruits the two other essential proteins, Gar1 and Nop10, to the pseudouridylation guide complex.
引用
收藏
页码:1238 / 1248
页数:11
相关论文
共 59 条
[1]   Structure and function of archaeal box C/D sRNP core proteins [J].
Aittaleb, M ;
Rashid, R ;
Chen, Q ;
Palmer, JR ;
Daniels, CJ ;
Li, H .
NATURE STRUCTURAL BIOLOGY, 2003, 10 (04) :256-263
[2]   The functions of animal microRNAs [J].
Ambros, V .
NATURE, 2004, 431 (7006) :350-355
[3]   THUMP - a predicted RNA-binding domain shared by 4-thiouridine, pseudouridine synthases and RNA methylases [J].
Aravind, L ;
Koonin, EV .
TRENDS IN BIOCHEMICAL SCIENCES, 2001, 26 (04) :215-217
[4]  
Bachellerie J. P., 1998, MODIFICATION EDITING, P255
[5]   The RNA world of the nucleolus: Two major families of small RNAs defined by different box elements with related functions [J].
Balakin, AG ;
Smith, L ;
Fournier, MJ .
CELL, 1996, 86 (05) :823-834
[6]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[7]   Elements essential for accumulation and function of small nucleolar RNAs directing site-specific pseudouridylation of ribosomal RNAs [J].
Bortolin, ML ;
Ganot, P ;
Kiss, T .
EMBO JOURNAL, 1999, 18 (02) :457-469
[8]   A small nucleolar RNP protein is required for pseudouridylation of eukaryotic ribosomal RNAs [J].
BousquetAntonelli, C ;
Henry, Y ;
Gelugne, JP ;
CaizerguesFerrer, M ;
Kiss, T .
EMBO JOURNAL, 1997, 16 (15) :4770-4776
[9]   Targeted ribose methylation of RNA in vivo directed by tailored antisense RNA guides [J].
Cavaille, J ;
Nicoloso, M ;
Bachellerie, JP .
NATURE, 1996, 383 (6602) :732-735
[10]   Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization [J].
Cavaillé, J ;
Buiting, K ;
Kiefmann, M ;
Lalande, M ;
Brannan, CI ;
Horsthemke, B ;
Bachellerie, JP ;
Brosius, J ;
Hüttenhofer, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (26) :14311-14316