Improved chromium tolerance of Medicago sativa by plant growth-promoting rhizobacteria (PGPR)

被引:60
|
作者
Tirry, Nabil [1 ]
Kouchou, Aziza [1 ]
El Omari, Bouchra [1 ]
Ferioun, Mohamed [1 ]
El Ghachtouli, Naima [1 ]
机构
[1] Sidi Mohamed Ben Abdellah Univ, Microbial Biotechnol & Bioact Mol Lab, Sci & Technol Fac, Fes, Morocco
关键词
Plant growth-promoting rhizobacteria; Metallic stress; Medicago sativa; Oxidative stress; Phytoremediation; HEAVY-METALS; OXIDATIVE STRESS; PHYSIOLOGICAL-RESPONSES; HEXAVALENT CHROMIUM; ENDOPHYTIC BACTERIA; PHASEOLUS-VULGARIS; CONTAMINATED SOIL; CADMIUM TOXICITY; COMBINED ABILITY; SALICYLIC-ACID;
D O I
10.1186/s43141-021-00254-8
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background Soil pollution by heavy metals increases the bioavailability of metals like hexavalent chromium (Cr (VI)), subsequently limiting plant growth and reducing the efficiency of phytoremediation. Plant growth-promoting rhizobacteria (PGPR) have substantial potential to enhance plant growth as well as plant tolerance to metal stress. The aim of this research was to investigate Cr (VI) phytoremediation enhancement by PGPR. Results The results showed that the 27 rhizobacterial isolates studied were confirmed as Cr (VI)-resistant PGPR, by using classical biochemical tests (phosphate solubilization, nitrogen fixation, indole acetic acid, exopolysaccharides, hydrogen cyanide, siderophores, ammonia, cellulase, pectinase, and chitinase production) and showed variable levels of Cr (VI) resistance (300-600 mg/L). The best four selected Cr (VI)-resistant PGPR (NT15, NT19, NT20, and NT27) retained most of the PGP traits in the presence of 100-200 mg/L concentrations of Cr (VI). The inoculation of Medicago sativa with any of these four isolates improved the shoot and root dry weight. The NT27 isolate identified using 16S rDNA gene sequence analyses as a strain of Pseudomonas sp. was most effective in terms of plant growth promotion and stress level decrease. It increased shoot and root dry weights of M. sativa by 97.6 and 95.4%, respectively, in the presence of Cr (VI) when compared to non-inoculated control plants. It also greatly increased chlorophyll content and decreased the levels of stress markers, malondialdehyde, hydrogen peroxide, and proline. The results of the effect of Pseudomonas sp. on Cr content and bioaccumulation factor (BAF) of the shoots and roots of M. sativa plants showed the increase of plant biomass concomitantly with the increase of Cr root concentration in inoculated plants. This would lead to a higher potential of Cr (VI) phytostabilization. Conclusions This study demonstrates that the association M. sativa-Pseudomonas sp. may be an efficient biological system for the bioremediation of Cr (VI)-contaminated soils.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Improved chromium tolerance of Medicago sativa by plant growth-promoting rhizobacteria (PGPR)
    Nabil Tirry
    Aziza Kouchou
    Bouchra El Omari
    Mohamed Ferioun
    Naïma El Ghachtouli
    Journal of Genetic Engineering and Biotechnology, 19
  • [2] Plant Growth-Promoting Rhizobacteria Improved Salinity Tolerance of Lactuca sativa and Raphanus sativus
    Hussein, Khalid Abdallah
    Joo, Jin Ho
    JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, 2018, 28 (06) : 938 - 945
  • [3] Plant growth-promoting rhizobacteria’s (PGPR) effects on Medicago sativa growth, arbuscular mycorrhizal colonisation, and soil enzyme activities
    Tirry N.
    Ferioun M.
    Kouchou A.
    Laghmari G.
    Asri M.
    Zouitane I.
    Bahafid W.
    El Omari B.
    El Ghachtouli N.
    International Journal of Environmental Studies, 2024, 81 (03) : 1190 - 1208
  • [4] Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture
    P. N. Bhattacharyya
    D. K. Jha
    World Journal of Microbiology and Biotechnology, 2012, 28 : 1327 - 1350
  • [5] Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture
    Bhattacharyya, P. N.
    Jha, D. K.
    WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2012, 28 (04): : 1327 - 1350
  • [6] Using plant growth-promoting rhizobacteria (PGPR) to improve plant growth
    Grobelak, A.
    Napora, A.
    Kacprzak, M.
    ECOLOGICAL ENGINEERING, 2015, 84 : 22 - 28
  • [7] PLANT GROWTH-PROMOTING RHIZOBACTERIA (PGPR) ON CANOLA AND SOYBEAN IN CANADA
    SCHER, FM
    KLOEPPER, JW
    HUME, D
    LIFSHITZ, R
    SIMONSON, C
    SINGLETON, C
    LEE, L
    TIPPING, B
    FRAULEY, K
    KUTCHAW, T
    LALIBERTE, M
    ZALESKA, I
    PHYTOPATHOLOGY, 1987, 77 (01) : 121 - 121
  • [8] Rhizosphere Colonization Determinants by Plant Growth-Promoting Rhizobacteria (PGPR)
    Santoyo, Gustavo
    Urtis-Flores, Carlos Alberto
    Loeza-Lara, Pedro Damian
    del Carmen Orozco-Mosqueda, Ma.
    Glick, Bernard R.
    BIOLOGY-BASEL, 2021, 10 (06):
  • [9] The effects of plant growth-promoting rhizobacteria (PGPR) on the growth and quality of strawberries
    Pii, Y.
    Graf, H.
    Valentinuzzi, F.
    Cesco, S.
    Mimmo, T.
    VIII INTERNATIONAL SYMPOSIUM ON MINERAL NUTRITION OF FRUIT CROPS, 2018, 1217 : 231 - 238
  • [10] Efficiency of plant growth-promoting rhizobacteria (PGPR) for the enhancement of rice growth
    Ashrafuzzaman, M.
    Hossen, Farid Akhtar
    Ismail, M. Razi
    Hoque, Md. Anamul
    Islam, M. Zahurul
    Shahidullah, S. M.
    Meon, Sariah
    AFRICAN JOURNAL OF BIOTECHNOLOGY, 2009, 8 (07): : 1247 - 1252