ROBUST SIGN TEST FOR THE UNIT ROOT HYPOTHESIS OF AUTOREGRESSION

被引:0
作者
Boldin, M., V [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Moscow, Russia
关键词
hypotheses testing; autoregression; unit root; sign tests; contaminations; qualitative robustness;
D O I
10.1137/S0040585X97T989106
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
An AR(1)-model is considered with autoregression observations that contain gross errors (contaminations) with unknown arbitrary distribution. The unit root hypothesis for autoregression is tested. A special sign test is proposed as an alternative to the least-square test (the latter test is not applicable in this setting). The sign test is shown to be locally qualitatively robust in terms of the equicontinuity of the power.
引用
收藏
页码:351 / 363
页数:13
相关论文
共 11 条
[1]   Local robustness of sign tests in AR(1) against outliers [J].
Boldin M.V. .
Mathematical Methods of Statistics, 2011, 20 (1) :1-13
[2]   ROBUSTNESS OF SIGN TESTS FOR TESTING HYPOTHESES ABOUT ORDER OF AUTOREGRESSION [J].
Boldin, M. V. .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 2013, 57 (04) :663-+
[3]  
Boldin M. V., 1997, TRANSL MATH MONOGR, V162
[4]   Sign tests in the simplest auto-regression with coefficient from R [J].
Boldin, MV .
RUSSIAN MATHEMATICAL SURVEYS, 1997, 52 (03) :607-608
[5]   ASYMPTOTIC INFERENCE FOR NEARLY NONSTATIONARY AR(1) PROCESSES [J].
CHAN, NH ;
WEI, CZ .
ANNALS OF STATISTICS, 1987, 15 (03) :1050-1063
[6]   DISTRIBUTION OF THE ESTIMATORS FOR AUTOREGRESSIVE TIME-SERIES WITH A UNIT ROOT [J].
DICKEY, DA ;
FULLER, WA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1979, 74 (366) :427-431
[7]   THE CALCULATION OF THE LIMITING DISTRIBUTION OF THE LEAST-SQUARES ESTIMATOR OF THE PARAMETER IN A RANDOM-WALK MODEL [J].
EVANS, GBA ;
SAVIN, NE .
ANNALS OF STATISTICS, 1981, 9 (05) :1114-1118
[8]  
Hajek J., 1967, Theory of Rank Tests
[9]  
MARTIN RD, 1986, ANN STAT, V14, P781, DOI 10.1214/aos/1176350027
[10]   QUALITATIVE ROBUSTNESS OF RANK-TESTS [J].
RIEDER, H .
ANNALS OF STATISTICS, 1982, 10 (01) :205-211