Thermal Conversion of Triazine-Based Covalent Organic Frameworks to Nitrogen-Doped Nanoporous Carbons and Their Capacitor Performance

被引:12
|
作者
Kim, Gayoung [1 ]
Shiraki, Tomohiro [1 ,2 ]
Fujigaya, Tsuyohiko [1 ,2 ,3 ]
机构
[1] Kyushu Univ, Grad Sch Engn, Dept Appl Chem, Nishi Ku, 744 Motooka, Fukuoka 8190395, Japan
[2] Kyushu Univ, Int Inst Carbon Neutral Energy Res WPI I2CNER, Nishi Ku, 744 Motooka, Fukuoka 8190395, Japan
[3] Kyushu Univ, Ctr Mol Syst, Nishi Ku, 744 Motooka, Fukuoka 8190395, Japan
关键词
Porous carbon; Covalent organic frameworks; Capacitor electrode; MESOPOROUS CARBON; AMORPHOUS-CARBON; ENERGY-STORAGE; FUNCTIONALITIES; CARBONIZATION; DECOMPOSITION; TEMPERATURE; EVOLUTION; GRAPHITE;
D O I
10.1246/bcsj.20190357
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanoporous carbons with well-defined pore structures are promising for advanced energy applications. Herein, we fabricate nitrogen-doped porous carbons via direct carbonization of a triazine-based covalent organic framework (TACOF1) that acts as both intrinsic template and carbon/nitrogen source. The carbonized TACOF1 forms porous carbon that has a large surface area (1194 m(2) g(-1)) comprised of high volumes of micro-and meso-pores (0.58 cm(3) g(-1) and 0.44 cm(3) g(-1), respectively) with a narrow size distribution. In addition, nitrogen doping of the graphitic carbons is uniformly achieved. A thermal analysis along with evolved gas investigation reveals that chemical processes, including N-2 gas release and graphitization, vary pore texture formation in the resultant carbons with strong dependence on carbonization temperature. Such structural difference of the carbonized TACOF1 changes electrochemical capacitor behavior. The carbonized TACOF1 synthesized at 800 degrees C is found to show good capacitive performance due to its nitrogen-doped porous structures.
引用
收藏
页码:414 / 420
页数:7
相关论文
共 50 条
  • [21] A simple strategy for the construction of bi-supported triazine-based covalent organic frameworks as high-performance capacitive materials
    Yao, Chan
    Hu, Yue
    Cui, Di
    Xu, Mengyue
    Xu, Yanhong
    NEW JOURNAL OF CHEMISTRY, 2024, 48 (14) : 6386 - 6391
  • [22] Substituted triazine-based covalent organic frameworks aerogels for the efficient adsorption and catalytic degradation of tetracycline hydrochloride
    Cao, Yiwen
    Wang, You
    Wei, Shiyuan
    Li, Meng
    Wang, Hao
    Zhou, Fa
    Li, Jiawei
    Huang, Jianhan
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 686 : 978 - 989
  • [23] Linkage Microenvironment Modulation in Triazine-Based Covalent Organic Frameworks for Enhanced Photocatalytic Hydrogen Peroxide Production
    Liu, Rongchen
    Zhang, Mengqi
    Zhang, Fulin
    Zeng, Bing
    Li, Xia
    Guo, Zhiguang
    Lang, Xianjun
    SMALL, 2025, 21 (10)
  • [24] Halogen-functionalized triazine-based organic frameworks towards high performance supercapacitors
    Gao, Yun
    Zhi, Chuanwei
    Cui, Panpan
    Zhang, Kai A.I.
    Lv, Li-Ping
    Wang, Yong
    Chemical Engineering Journal, 2021, 400
  • [25] Halogen-functionalized triazine-based organic frameworks towards high performance supercapacitors
    Gao, Yun
    Zhi, Chuanwei
    Cui, Panpan
    Zhang, Kai A. I.
    Lv, Li-Ping
    Wang, Yong
    CHEMICAL ENGINEERING JOURNAL, 2020, 400
  • [26] Covalent Triazine-Based Frameworks with Ultramicropores and High Nitrogen Contents for Highly Selective CO2 Capture
    Wang, Keke
    Huang, Hongliang
    Liu, Dahuan
    Wang, Chang
    Li, Jinping
    Zhong, Chongli
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2016, 50 (09) : 4869 - 4876
  • [27] Electrochemical actuators based on nitrogen-doped carbons derived from zeolitic imidazolate frameworks
    Lu, Fangzhou
    Xiang, Kai
    Wang, Yanni
    Chen, Tian
    MATERIALS & DESIGN, 2020, 187
  • [28] Chemical applicability and computation of K-Banhatti indices for benzenoid hydrocarbons and triazine-based covalent organic frameworks
    M. C. Shanmukha
    Rashad Ismail
    K. J. Gowtham
    A. Usha
    Muhammad Azeem
    Esmail Hassan Abdullatif Al-Sabri
    Scientific Reports, 13
  • [29] Engineering single-atom catalysts on triazine-based covalent organic frameworks for enhanced photocatalytic performance in N2 reduction
    Chen, Meiyan
    Li, Qingyu
    Xu, Xinyue
    Liu, Diwen
    Ma, Zuju
    Li, Yanxia
    Zhang, Yanjie
    Li, Dejing
    Chen, Qiang
    Sa, Rongjian
    CHEMICAL ENGINEERING JOURNAL, 2024, 494
  • [30] Chemical applicability and computation of K-Banhatti indices for benzenoid hydrocarbons and triazine-based covalent organic frameworks
    Shanmukha, M. C.
    Ismail, Rashad
    Gowtham, K. J.
    Usha, A.
    Azeem, Muhammad
    Al-Sabri, Esmail Hassan Abdullatif
    SCIENTIFIC REPORTS, 2023, 13 (01)