L(2,1,1)-Labeling Is NP-Complete for Trees

被引:0
作者
Golovach, Petr A. [1 ]
Lidicky, Bernard [2 ,3 ]
Paulusma, Daniel [1 ]
机构
[1] Univ Durham, Dept Comp Sci, Sci Labs, South Rd, Durham DH1 3LE, England
[2] Charles Univ Prague, Fac Math & Phys, DIMATIA, CR-11800 Prague, Czech Republic
[3] Inst Theoret Comp Sci ITI, CR-11800 Prague, Czech Republic
来源
THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, PROCEEDINGS | 2010年 / 6108卷
基金
英国工程与自然科学研究理事会;
关键词
DISTANCE CONSTRAINED LABELINGS; GRAPHS; TREEWIDTH;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
An L(p(1), p(2), p(3))-labeling of a graph G with span lambda is a mapping f that assigns each vertex u of G an integer label 0 <= f(u) <= lambda such that vertical bar f(u) - f(v)vertical bar >= p(i) whenever vertices u and v are of distance i for i is an element of {1, 2, 3}. We show that testing whether a given graph has an L(2, 1, 1)-labeling with some given span lambda is NP-complete even for the class of trees.
引用
收藏
页码:211 / +
页数:2
相关论文
共 18 条
[1]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theory of NP-Completeness
[2]  
BERTOSSI AA, 2003, 17 INT S PAR DISTR P, P222
[3]   The L(h, k)-labelling problem:: A survey and annotated bibliography [J].
Calamoneri, Tiziana .
COMPUTER JOURNAL, 2006, 49 (05) :585-608
[4]   On L(d, 1)-labelings of graphs [J].
Chang, GJ ;
Ke, WT ;
Kuo, D ;
Liu, DDF ;
Yeh, RK .
DISCRETE MATHEMATICS, 2000, 220 (1-3) :57-66
[5]   The L(2,1)-labeling problem on graphs [J].
Chang, GJ ;
Kuo, D .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1996, 9 (02) :309-316
[6]   THE MONADIC 2ND-ORDER LOGIC OF GRAPHS .1. RECOGNIZABLE SETS OF FINITE GRAPHS [J].
COURCELLE, B .
INFORMATION AND COMPUTATION, 1990, 85 (01) :12-75
[7]  
Fiala J, 2005, LECT NOTES COMPUT SC, V3580, P360
[8]  
Fiala J, 2004, LECT NOTES COMPUT SC, V3353, P58
[9]   Fixed-parameter complexity of λ-labelings [J].
Fiala, J ;
Kloks, T ;
Kratochvíl, J .
DISCRETE APPLIED MATHEMATICS, 2001, 113 (01) :59-72
[10]  
FIALA J., 2002, Discuss. Math. Graph Theory, V22, P89