Stress concentration at interacting spherical inclusions in a transversely isotropic body

被引:4
作者
Kushch, VI [1 ]
机构
[1] Natl Acad Sci Ukraine, Inst Superhard Mat, UA-252143 Kiev, Ukraine
关键词
elasticity; spherical inclusion; transverse isotropy; superposition principle; partial vector solutions; addition theorems; stress concentration;
D O I
10.1023/B:INAM.0000048682.11099.10
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
An elastic-equilibrium problem is rigorously solved for a transversely isotropic body containing a finite number of arbitrarily arranged and oriented transversely isotropic spherical inclusions or an infinite periodic array of such inclusions. The solution is found based on the superposition principle for general solutions of single-particle problems and the addition theorems for partial vector solutions of the elastic equilibrium equations. The numerical results presented allow assessing the influence of matrix anisotropy on the stress concentration between inclusions.
引用
收藏
页码:893 / 899
页数:7
相关论文
共 12 条
[1]   Mechanics of curved composites (piecewise-homogeneous body model) [J].
Akbarov, SD ;
Guz, AN .
INTERNATIONAL APPLIED MECHANICS, 2002, 38 (12) :1415-1439
[2]  
CHEN HS, 1978, INT J SOLIDS STRUCT, V14, P331, DOI 10.1016/0020-7683(78)90016-1
[3]   Propagation of harmonic waves through fibrous and porous elastic materials of regular microstructure [J].
Golovchan, VT .
INTERNATIONAL APPLIED MECHANICS, 2002, 38 (10) :1178-1200
[4]  
GOLOVCHAN VT, 1993, STAT MAT, V1
[5]   Stress concentrations in the particulate composite with transversely isotropic phases [J].
Kushch, VI .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2003, 40 (23) :6369-6388
[6]   Conductivity of a periodic particle composite with transversely isotropic phases [J].
Kushch, VI .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1997, 453 (1956) :65-76
[7]  
KUSHCH VI, 1989, THESIS I MEKH NAN UK
[8]  
Kushch VI, 1985, PRIKL MEKH, V21, P18
[9]  
MOSKOVIDIS ZA, 1975, J APPL MECH, V42, P847
[10]   Exact analytical solutions of static electroelastic and thermoelectroelastic problems for a transversely isotropic body in curvilinear coordinate systems [J].
Podil'chuk, YN .
INTERNATIONAL APPLIED MECHANICS, 2003, 39 (02) :132-170