Global sensitivity analysis;
Density-based sensitivity analysis;
Regional sensitivity analysis;
Classification of output;
UNCERTAINTY;
ESTIMATOR;
FRAMEWORK;
D O I:
10.1016/j.apm.2020.03.025
中图分类号:
T [工业技术];
学科分类号:
08 ;
摘要:
Global sensitivity analysis is a widely used tool for uncertainty apportionment and is very useful for decision making, risk assessment, model simplification, optimal design of experiments, etc. Density-based sensitivity analysis and regional sensitivity analysis are two widely used approaches. Both of them can work with a given sample set of model input-output pairs. One significant difference between them is that density-based sensitivity analysis analyzes output distributions conditional on input values (forward), while regional sensitivity analysis analyzes input distributions conditional on output values (reverse). In this paper, we study the relationship between these two approaches and show that regional sensitivity analysis (reverse), when focusing on probability density functions of input, converges towards density-based sensitivity analysis (forward) as the number of classes for conditioning model outputs in the reverse method increases. Similar to the existing general form of forward sensitivity indices, we derive a general form of the reverse sensitivity indices and provide the corresponding reverse given-data method. Due to the shown equivalence, the reverse given-data method provides an efficient way to approximate density-based sensitivity indices. Two test examples are used to verify this connection and compare the results. Finally, we use the reverse given-data method to perform sensitivity analysis in a carbon dioxide storage benchmark problem with multiple outputs, where forward analysis of density-based indices would be impossible due to the high-dimensionality of its model outputs. (C) 2020 Elsevier Inc. All rights reserved.
机构:
Univ Savoie, CNRS, Lab EDYTEM, F-73376 Le Bourget Du Lac, France
Univ Toulouse, INPT, UPS, IMFT, F-31400 Toulouse, FranceUniv Savoie, CNRS, Lab EDYTEM, F-73376 Le Bourget Du Lac, France
Castaings, W.
Borgonovo, E.
论文数: 0引用数: 0
h-index: 0
机构:
Bocconi Univ, Dpt Decis Sci, I-20135 Milan, Italy
Bocconi Univ, ELEUSI, I-20135 Milan, ItalyUniv Savoie, CNRS, Lab EDYTEM, F-73376 Le Bourget Du Lac, France
Borgonovo, E.
Morris, M. D.
论文数: 0引用数: 0
h-index: 0
机构:
Iowa State Univ, Dpt Stat, Ames, IA 50011 USAUniv Savoie, CNRS, Lab EDYTEM, F-73376 Le Bourget Du Lac, France
Morris, M. D.
Tarantola, S.
论文数: 0引用数: 0
h-index: 0
机构:
European Commiss, Joint Res Ctr, I-21027 Ispra, VA, ItalyUniv Savoie, CNRS, Lab EDYTEM, F-73376 Le Bourget Du Lac, France
机构:
Univ Carlos III Madrid, Mech Engn Dept, MAQLAB Res Grp, Leganes 28911, SpainUniv Carlos III Madrid, Mech Engn Dept, MAQLAB Res Grp, Leganes 28911, Spain
Vadillo Morillas, Abraham
Meneses Alonso, Jesus
论文数: 0引用数: 0
h-index: 0
机构:
Univ Carlos III Madrid, Mech Engn Dept, MAQLAB Res Grp, Leganes 28911, Spain
Pedro Juan de Lastanosa Res Inst, Leganes 28911, SpainUniv Carlos III Madrid, Mech Engn Dept, MAQLAB Res Grp, Leganes 28911, Spain
Meneses Alonso, Jesus
Bustos Caballero, Alejandro
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nacl Educ Distancia, Dept Mech, MAQLAB Res Grp, Madrid 28040, SpainUniv Carlos III Madrid, Mech Engn Dept, MAQLAB Res Grp, Leganes 28911, Spain
Bustos Caballero, Alejandro
Castejon Sisamon, Cristina
论文数: 0引用数: 0
h-index: 0
机构:
Univ Carlos III Madrid, Mech Engn Dept, MAQLAB Res Grp, Leganes 28911, Spain
Pedro Juan de Lastanosa Res Inst, Leganes 28911, SpainUniv Carlos III Madrid, Mech Engn Dept, MAQLAB Res Grp, Leganes 28911, Spain