Sampling inequalities for anisotropic tensor product grids

被引:2
作者
Rieger, Christian [1 ,2 ]
Wendland, Holger [3 ]
机构
[1] Univ Bonn, Inst Numer Simulat, D-53115 Bonn, Germany
[2] Rhein Westfal TH Aachen, Dept Math, Schinkelstr 2, D-52062 Aachen, Germany
[3] Univ Bayreuth, Dept Math, D-95440 Bayreuth, Germany
关键词
high-dimensional approximation; anisotropic sparse grids; sampling inequalities; kernel-based reconstructions; PARTIAL-DIFFERENTIAL-EQUATIONS; STOCHASTIC COLLOCATION METHOD; SPARSE; INTERPOLATION; APPROXIMATION;
D O I
10.1093/imanum/dry080
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive sampling inequalities for discrete point sets that are of anisotropic tensor product form. Such 3 sampling inequalities can be used to prove convergence for arbitrary stable reconstruction processes. As usual in the context of high-dimensional problems, our sampling inequalities are expressed in terms of the number of data sites, i.e., the number of points in the sparse grid. To this end, new bounds on specific monotone sets and on the number of points in an anisotropic sparse grid are derived.
引用
收藏
页码:285 / 321
页数:37
相关论文
共 27 条
[1]  
[Anonymous], 2008, Support Vector Machines
[2]  
[Anonymous], 2000, APPL FUNCTIONAL ANAL, DOI DOI 10.1002/9781118032725
[3]  
[Anonymous], 2005, CAMBRIDGE MONOGRAPHS
[4]   An extension of a bound for functions in Sobolev spaces, with applications to (m, s)-spline interpolation and smoothing [J].
Arcangeli, Remi ;
Cruz Lopez de Silanes, Maria ;
Jose Torrens, Juan .
NUMERISCHE MATHEMATIK, 2007, 107 (02) :181-211
[5]   Functionals of exponential Brownian motion and divided differences [J].
Baxter, B. J. C. ;
Brummelhuis, R. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 236 (04) :424-433
[6]   LOWER AND UPPER BOUNDS FOR NUMBER OF LATTICE POINTS IN A SIMPLEX [J].
BEGEDDOV, AG .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1972, 22 (01) :106-&
[7]  
Cheney EW., 1985, APPROXIMATION THEORY
[8]   High-Dimensional Adaptive Sparse Polynomial Interpolation and Applications to Parametric PDEs [J].
Chkifa, Abdellah ;
Cohen, Albert ;
Schwab, Christoph .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2014, 14 (04) :601-633
[9]   ADAPTIVE SMOLYAK PSEUDOSPECTRAL APPROXIMATIONS [J].
Conrad, Patrick R. ;
Marzouk, Youssef M. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (06) :A2643-A2670
[10]  
de Boor C., 2005, Surveys in Approximation Theory (SAT)[electronic only], V1, P46