LANGLANDS RECIPROCITY FOR THE EVEN-DIMENSIONAL NONCOMMUTATIVE TORI

被引:1
作者
Nikolaev, Igor [1 ]
机构
[1] Fields Inst Res Math Sci, Toronto, ON M5T 3J1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Langlands program; noncommutative tori;
D O I
10.1090/S0002-9939-2011-10864-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We conjecture an explicit formula for the higher-dimensional Dirichlet character; the formula is based on the K-theory of the so-called noncommutative tori. It is proved that our conjecture is true for the two-dimensional and one-dimensional (degenerate) noncommutative tori. In the second case, one gets a noncommutative analog of the Artin reciprocity law.
引用
收藏
页码:4153 / 4162
页数:10
相关论文
共 14 条
[1]  
[Anonymous], 1983, Tata Lectures on Theta. Progress in Mathematics
[2]  
Artin E., 1923, Abh. Math. Semin. Univ. Hamb., V3, P89
[3]  
Bernstein L., 1971, LECT NOTES MATH, V207
[4]  
Borevich Z.I., 1966, Number Theory
[5]  
ELLIOTT GA, 1982, P SYMP PURE MATH, V38, P177
[6]   AN ELEMENTARY INTRODUCTION TO THE LANGLANDS PROGRAM [J].
GELBART, S .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 10 (02) :177-219
[7]  
Hasse H., 1950, VORLESUNGEN ZAHLENTH, DOI [10.1007/978-3-642-52795-1, DOI 10.1007/978-3-642-52795-1]
[8]  
Knapp A. W., 1997, P S PURE MATH, V61, P245
[9]  
Manin YI, 2004, LEGACY OF NIELS HENRIK ABEL, P685
[10]  
Nikolaev I, 2009, OSAKA J MATH, V46, P515