Existence of Homoclinic Orbits for a Class of Asymptotically p-Linear Difference Systems with p-Laplacian

被引:4
作者
Zhang, Qiongfen [1 ]
Tang, X. H. [1 ]
机构
[1] Cent S Univ, Sch Math Sci & Comp Technol, Changsha 410083, Hunan, Peoples R China
关键词
2ND-ORDER HAMILTONIAN-SYSTEMS; PERIODIC-SOLUTIONS; SUBHARMONIC SOLUTIONS; EQUATIONS; RETARDATION; ADVANCE;
D O I
10.1155/2011/351562
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By applying a variant version of Mountain Pass Theorem in critical point theory, we prove the existence of homoclinic solutions for the following asymptotically p-linear difference system with p-Laplacian Delta(vertical bar Delta u(n - 1)vertical bar(p-2)Delta u(n - 1)) +del[-K(n, u(n)) + W(n, u(n))] = 0, where p is an element of (1, +infinity), n is an element of Z, u is an element of R(N), K, W : Z x R(N) -> R are not periodic in n, andWis asymptotically p-linear at infinity.
引用
收藏
页数:17
相关论文
共 30 条
[1]  
Agarwal R.P., 2000, MONOGRAPHS TXB PURE, V228
[2]   Multiple positive solutions of singular discrete p-Laplacian problems via variational methods [J].
Agarwal, Ravi P. ;
Perera, Kanishka ;
O'Regan, Donal .
ADVANCES IN DIFFERENCE EQUATIONS, 2005, 2005 (02) :93-99
[3]   PERIODIC-SOLUTIONS OF FIRST-ORDER LINEAR DIFFERENCE-EQUATIONS [J].
AGARWAL, RP ;
POPENDA, J .
MATHEMATICAL AND COMPUTER MODELLING, 1995, 22 (01) :11-19
[4]  
Ahlbrandt C. D., 1996, KLUWER TEXTS MATH SC, V16
[5]  
[Anonymous], 1979, Istit. Lombardo Accad. Sci. Lett. Rend. A
[6]  
[Anonymous], 1899, Les Methods Nouvells de la Mecanique Leleste
[7]   Existence of homoclinic orbits for 2nth-order nonlinear difference equations containing both many advances and retardations [J].
Chen, Peng ;
Tang, Xianhua .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 381 (02) :485-505
[8]   Existence of Homoclinic Solutions for a Class of Nonlinear Difference Equations [J].
Chen, Peng ;
Tang, X. H. .
ADVANCES IN DIFFERENCE EQUATIONS, 2010,
[9]   Existence of infinitely many homoclinic orbits for fourth-order difference systems containing both advance and retardation [J].
Chen, Peng ;
Tang, X. H. .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (09) :4408-4415
[10]  
Elaydi S, 1999, UNDERGRADUATE TEXTS