Forecasting bitcoin volatility: Evidence from the options market

被引:21
|
作者
Hoang, Lai T. [1 ,2 ]
Baur, Dirk G. [1 ]
机构
[1] Univ Western Australia, UWA Business Sch, Crawley, WA 6009, Australia
[2] Natl Econ Univ, Hanoi, Vietnam
关键词
bitcoin; bitcoin options market; forecasting; implied volatility; realized volatility; IMPLIED VOLATILITY; INFORMATION-CONTENT; FOREIGN-EXCHANGE; STOCK; PRICE; CRYPTOCURRENCY;
D O I
10.1002/fut.22144
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
This paper studies a large number of bitcoin (BTC) options traded on the options exchange Deribit. We use the trades to calculate implied volatility (IV) and analyze if volatility forecasts can be improved using such information. IV is less accurate than AutoRegressive-Moving-Average or Heterogeneous Auto-Regressive model forecasts in predicting short-term BTC volatility (1 day ahead), but superior in predicting long-term volatility (7, 10, 15 days ahead). Furthermore, a combination of IV and model-based forecasts provides the highest accuracy for all forecasting horizons revealing that the BTC options market contains unique information.
引用
收藏
页码:1584 / 1602
页数:19
相关论文
共 50 条
  • [41] A Study of Bitcoin-Based Intraday Volatility Forecasting for Cross-Market Spreads
    Yang, Longguang
    Hou, Fengshuang
    Shi, Huihong
    EMERGING MARKETS FINANCE AND TRADE, 2023, 59 (14) : 3941 - 3951
  • [42] What drives volatility in Bitcoin market?
    Bakas, Dimitrios
    Magkonis, Georgios
    Oh, Eun Young
    FINANCE RESEARCH LETTERS, 2022, 50
  • [43] Forecasting the volatility of the German stock market: New evidence
    Liang, Chao
    Zhang, Yi
    Zhang, Yaojie
    APPLIED ECONOMICS, 2022, 54 (09) : 1055 - 1070
  • [44] Uncertainty and the volatility forecasting power of option-implied volatility
    Jeon, Byounghyun
    Seo, Sung Won
    Kim, Jun Sik
    JOURNAL OF FUTURES MARKETS, 2020, 40 (07) : 1109 - 1126
  • [45] Volatility connectedness in the cryptocurrency market: Is Bitcoin a dominant cryptocurrency?
    Yi, Shuyue
    Xu, Zishuang
    Wang, Gang-Jin
    INTERNATIONAL REVIEW OF FINANCIAL ANALYSIS, 2018, 60 : 98 - 114
  • [46] Global equity market volatility forecasting: New evidence
    Liang, Chao
    Wei, Yu
    Lei, Likun
    Ma, Feng
    INTERNATIONAL JOURNAL OF FINANCE & ECONOMICS, 2022, 27 (01) : 594 - 609
  • [47] Hybrid Forecasting Models Based on the Neural Networks for the Volatility of Bitcoin
    Seo, Monghwan
    Kim, Geonwoo
    APPLIED SCIENCES-BASEL, 2020, 10 (14):
  • [48] Bitcoin return volatility forecasting using nonparametric GARCH models
    Mestiri, Sami
    INTERNATIONAL JOURNAL OF FINANCIAL ENGINEERING, 2024, 11 (04)
  • [49] Forecasting realized volatility of Bitcoin: The informative role of price duration
    Slim, Skander
    Tabche, Ibrahim
    Koubaa, Yosra
    Osman, Mohamed
    Karathanasopoulos, Andreas
    JOURNAL OF FORECASTING, 2023, 42 (07) : 1909 - 1929
  • [50] Bitcoin volatility forecasting: An artificial differential equation neural network
    Azizi, S. Pourmohammad
    Huang, Chien Yi
    Chen, Ti An
    Chen, Shu Chuan
    Nafei, Amirhossein
    AIMS MATHEMATICS, 2023, 8 (06): : 13907 - 13922