Forecasting bitcoin volatility: Evidence from the options market

被引:21
|
作者
Hoang, Lai T. [1 ,2 ]
Baur, Dirk G. [1 ]
机构
[1] Univ Western Australia, UWA Business Sch, Crawley, WA 6009, Australia
[2] Natl Econ Univ, Hanoi, Vietnam
关键词
bitcoin; bitcoin options market; forecasting; implied volatility; realized volatility; IMPLIED VOLATILITY; INFORMATION-CONTENT; FOREIGN-EXCHANGE; STOCK; PRICE; CRYPTOCURRENCY;
D O I
10.1002/fut.22144
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
This paper studies a large number of bitcoin (BTC) options traded on the options exchange Deribit. We use the trades to calculate implied volatility (IV) and analyze if volatility forecasts can be improved using such information. IV is less accurate than AutoRegressive-Moving-Average or Heterogeneous Auto-Regressive model forecasts in predicting short-term BTC volatility (1 day ahead), but superior in predicting long-term volatility (7, 10, 15 days ahead). Furthermore, a combination of IV and model-based forecasts provides the highest accuracy for all forecasting horizons revealing that the BTC options market contains unique information.
引用
收藏
页码:1584 / 1602
页数:19
相关论文
共 50 条
  • [21] The role of uncertainty index in forecasting volatility of Bitcoin: Fresh evidence from GARCH-MIDAS approach
    Xia, Yufei
    Sang, Chong
    He, Lingyun
    Wang, Ziyao
    FINANCE RESEARCH LETTERS, 2023, 52
  • [22] Do Jumps Matter for Volatility Forecasting? Evidence from Energy Markets
    Prokopczuk, Marcel
    Symeonidis, Lazaros
    Simen, Chardin Wese
    JOURNAL OF FUTURES MARKETS, 2016, 36 (08) : 758 - 792
  • [23] The information content of implied volatility and jumps in forecasting volatility: Evidence from the Shanghai gold futures market
    Luo, Xingguo
    Qin, Shihua
    Ye, Zinan
    FINANCE RESEARCH LETTERS, 2016, 19 : 105 - 111
  • [24] Do it with a smile: Forecasting volatility with currency options
    Reus, Lorenzo
    Carrasco, Jose A.
    Pincheira, Pablo
    FINANCE RESEARCH LETTERS, 2020, 34
  • [25] Forecasting global stock market implied volatility indices
    Degiannakis, Stavros
    Filis, George
    Hassani, Hossein
    JOURNAL OF EMPIRICAL FINANCE, 2018, 46 : 111 - 129
  • [26] Forecasting realized volatility of bitcoin returns: tail events and asymmetric loss
    Gkillas, Konstantinos
    Gupta, Rangan
    Pierdzioch, Christian
    EUROPEAN JOURNAL OF FINANCE, 2021, 27 (16) : 1626 - 1644
  • [27] Forecasting Bitcoin volatility using machine learning techniques
    Huang, Zih-Chun
    Sangiorgi, Ivan
    Urquhart, Andrew
    JOURNAL OF INTERNATIONAL FINANCIAL MARKETS INSTITUTIONS & MONEY, 2024, 97
  • [28] The role of US implied volatility index in forecasting Chinese stock market volatility: Evidence from HAR models
    Xiao, Jihong
    Wen, Fenghua
    Zhao, Yupei
    Wang, Xiong
    INTERNATIONAL REVIEW OF ECONOMICS & FINANCE, 2021, 74 : 311 - 333
  • [29] Forecasting Realized Volatility of Bitcoin: The Role of the Trade War
    Bouri, Elie
    Gkillas, Konstantinos
    Gupta, Rangan
    Pierdzioch, Christian
    COMPUTATIONAL ECONOMICS, 2021, 57 (01) : 29 - 53
  • [30] Forecasting Realized Volatility of Bitcoin: The Role of the Trade War
    Elie Bouri
    Konstantinos Gkillas
    Rangan Gupta
    Christian Pierdzioch
    Computational Economics, 2021, 57 : 29 - 53