Forecasting bitcoin volatility: Evidence from the options market
被引:21
|
作者:
Hoang, Lai T.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Western Australia, UWA Business Sch, Crawley, WA 6009, Australia
Natl Econ Univ, Hanoi, VietnamUniv Western Australia, UWA Business Sch, Crawley, WA 6009, Australia
Hoang, Lai T.
[1
,2
]
Baur, Dirk G.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Western Australia, UWA Business Sch, Crawley, WA 6009, AustraliaUniv Western Australia, UWA Business Sch, Crawley, WA 6009, Australia
Baur, Dirk G.
[1
]
机构:
[1] Univ Western Australia, UWA Business Sch, Crawley, WA 6009, Australia
This paper studies a large number of bitcoin (BTC) options traded on the options exchange Deribit. We use the trades to calculate implied volatility (IV) and analyze if volatility forecasts can be improved using such information. IV is less accurate than AutoRegressive-Moving-Average or Heterogeneous Auto-Regressive model forecasts in predicting short-term BTC volatility (1 day ahead), but superior in predicting long-term volatility (7, 10, 15 days ahead). Furthermore, a combination of IV and model-based forecasts provides the highest accuracy for all forecasting horizons revealing that the BTC options market contains unique information.