Krull-Schmidt fails for serial modules

被引:62
作者
Facchini, A
机构
关键词
D O I
10.1090/S0002-9947-96-01740-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We answer a question posed by Warfield in 1975: the Krull-Schmidt Theorem does not hold for serial modules, as we show via an example. Nevertheless we prove a weak form of the Krull-Schmidt Theorem for serial modules (Theorem 1.9). And we show that the Grothendieck group of the class of serial modules of finite Goldie dimension over a fixed ring R is a free abelian group.
引用
收藏
页码:4561 / 4575
页数:15
相关论文
共 8 条
[1]   ON SEMILOCAL RINGS [J].
CAMPS, R ;
DICKS, W .
ISRAEL JOURNAL OF MATHEMATICS, 1993, 81 (1-2) :203-211
[2]   UNISERIAL MODULES - SUMS AND ISOMORPHISMS OF SUBQUOTIENTS [J].
FACCHINI, A ;
SALCE, L .
COMMUNICATIONS IN ALGEBRA, 1990, 18 (02) :499-517
[3]   Krull-Schmidt fails for artinian modules [J].
Facchini, A ;
Herbera, D ;
Levy, LS ;
Vamos, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (12) :3587-3592
[4]   Modules with semi-local endomorphism ring [J].
Herbera, D ;
Shamsuddin, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (12) :3593-3600
[5]   ELEMENTARY DIVISORS AND MODULES [J].
KAPLANSKY, I .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1949, 66 (JUL-) :464-491
[6]  
STENSTROM B, 1975, RINGS QUOTIENTS
[7]   DUAL GOLDIE DIMENSION [J].
VARADARAJAN, K .
COMMUNICATIONS IN ALGEBRA, 1979, 7 (06) :565-610
[8]   SERIAL RINGS AND FINITELY PRESENTED MODULES [J].
WARFIELD, RB .
JOURNAL OF ALGEBRA, 1975, 37 (02) :187-222