Analytic continuation of the rotating black hole state counting

被引:13
作者
Ben Achour, Jibril [1 ]
Noui, Karim [2 ,3 ]
Perez, Alejandro [4 ,5 ]
机构
[1] Fudan Univ, Ctr Field Theory & Particles Phys, Dept Phys, Shanghai 20433, Peoples R China
[2] Univ Tours, Lab Math & Phys Theor, UMR 7350, Federat Denis Poisson, Parc Grandmt, F-37200 Tours, France
[3] Univ Paris 07, Lab APC Astroparticule & Cosmol, F-75013 Paris, France
[4] Aix Marseille Univ, Ctr Phys Theor, UMR 7332, F-13288 Marseille, France
[5] Univ Toulon & Var, F-13288 Marseille, France
关键词
Black Holes; Models of Quantum Gravity; ISOLATED HORIZONS; ENTROPY; INCLUSION; GEOMETRY;
D O I
10.1007/JHEP08(2016)149
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In loop quantum gravity, a spherical black hole can be described in terms of a Chern-Simons theory on a punctured 2-sphere. The sphere represents the horizon. The punctures are the edges of spin-networks in the bulk which cross the horizon and carry quanta of area. One can generalize this construction and model a rotating black hole by adding an extra puncture colored with the angular momentum J in the 2-sphere. We compute the entropy of rotating black holes in this model and study its semi-classical limit. After performing an analytic continuation which sends the Barbero-Immirzi parameter to gamma = +/- i, we show that the leading order term in the semi-classical expansion of the entropy reproduces the Bekenstein-Hawking law independently of the value of J.
引用
收藏
页数:13
相关论文
共 55 条
[1]  
Achour J. Ben, ARXIV151107332
[2]  
Agrillo I., 2008, PHYS REV LETT, V100
[3]   Detailed black hole state counting in loop quantum gravity [J].
Agullo, Ivan ;
Barbero G, J. Fernando ;
Borja, Enrique F. ;
Diaz-Polo, Jacobo ;
Villasenor, Eduardo J. S. .
PHYSICAL REVIEW D, 2010, 82 (08)
[4]   Combinatorics of the SU(2) black hole entropy in loop quantum gravity [J].
Agullo, Ivan ;
Fernando Barbero G, J. ;
Borja, Enrique F. ;
Diaz-Polo, Jacobo ;
Villasenor, Eduardo J. S. .
PHYSICAL REVIEW D, 2009, 80 (08)
[5]   Spin Foams and Canonical Quantization [J].
Alexandrov, Sergei ;
Geiller, Marc ;
Noui, Karim .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2012, 8
[6]  
[Anonymous], 1999, Adv. Theor. Math. Phys, DOI DOI 10.4310/ATMP.1999.V3.N3.A1
[7]   Quantum horizons and black-hole entropy: inclusion of distortion and rotation [J].
Ashtekar, A ;
Engle, J ;
Van den Broeck, C .
CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (04) :L27-L34
[8]   Non-minimally coupled scalar fields and isolated horizons [J].
Ashtekar, A ;
Corichi, A ;
Sudarsky, D .
CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (15) :3413-3425
[9]   Mechanics of rotating isolated horizons [J].
Ashtekar, A ;
Beetle, C ;
Lewandowski, J .
PHYSICAL REVIEW D, 2001, 64 (04)
[10]   Isolated horizons: a generalization of black hole mechanics [J].
Ashtekar, A ;
Beetle, C ;
Fairhurst, S .
CLASSICAL AND QUANTUM GRAVITY, 1999, 16 (02) :L1-L7