On some invariant solutions of (2+1)-dimensional Korteweg-de Vries equations

被引:25
作者
Kumar, Mukesh [1 ]
Tanwar, Dig Vijay [1 ]
机构
[1] Motilal Nehru Natl Inst Technol Allahabad, Dept Math, Allahabad 211004, Uttar Pradesh, India
关键词
KdV equations; Similarity transformation method; Symmetry reduction; Invariant solutions; Solitons; LIE SYMMETRY ANALYSIS; CONSERVATION-LAWS; COHERENT STRUCTURES; SOLITONS; SYSTEM; MODEL; FORM;
D O I
10.1016/j.camwa.2018.08.053
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present research, similarity transformation method is proposed to obtain some more general invariant solutions of (2+1)-dimensional Korteweg-de Vries equations. This system of equations describes nonlinear waves propagation on the surface of shallow water. The method reduces the number of independent variables by one using invariance property of Lie group theory. Thus, Korteweg-de Vries equations are reduced into a system of ordinary differential equations employing twice of similarity transformation method. This system of ordinary differential equations is solved under some parametric restrictions and provides invariant solutions. The obtained results are supplemented by numerical simulation taking suitable choice of arbitrary constants and functions. Eventually, the elastic behavior of multisoliton, compacton, negaton, positon, kink wave solution and dromion annihilation profiles are shown to make this research more admirable. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2535 / 2548
页数:14
相关论文
共 50 条
[21]   Solutions of coupled Korteweg-de Vries systems [J].
Loris, I .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2001, 70 (03) :662-665
[22]   Complexiton solutions to the Korteweg-de Vries equation [J].
Ma, WX .
PHYSICS LETTERS A, 2002, 301 (1-2) :35-44
[23]   Asymptotic behavior of solutions to dissipative Korteweg-de Vries equations [J].
Vento, Stephane .
ASYMPTOTIC ANALYSIS, 2010, 68 (03) :155-186
[24]   Investigation of a new similarity solution for the (2+1)-dimensional Schwarzian Korteweg-de Vries equation [J].
Ali, Mohamed R. ;
Mubaraki, Ali ;
Sadat, R. ;
Ma, Wen-Xiu .
MODERN PHYSICS LETTERS B, 2025, 39 (17)
[25]   On the exact and numerical solutions to a new (2 + 1)-dimensional Korteweg-de Vries equation with conformable derivative [J].
Özkan Y.S. ;
Yaşar E. ;
Çelik N. .
Nonlinear Engineering, 2021, 10 (01) :46-65
[26]   Numerical Studies of the Fractional Korteweg-de Vries, Korteweg-de Vries-Burgers' and Burgers' Equations [J].
Khader, M. M. ;
Saad, Khaled M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2021, 91 (01) :67-77
[27]   Simulations and observation of nonlinear internal waves on the continental shelf: Korteweg-de Vries and extended Korteweg-de Vries solutions [J].
O'Driscoll, Kieran ;
Levine, Murray .
OCEAN SCIENCE, 2017, 13 (05) :749-763
[28]   Negative-order Korteweg-de Vries equations [J].
Qiao, Zhijun ;
Fan, Engui .
PHYSICAL REVIEW E, 2012, 86 (01)
[29]   Binary Bell polynomial manipulations on the integrability of a generalized (2+1)-dimensional Korteweg-de Vries equation [J].
Wang, Yunhu ;
Chen, Yong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 400 (02) :624-634
[30]   Backlund transformation and multi-soliton solutions for a (2+1)-dimensional Korteweg-de Vries system via symbolic computation [J].
Geng, Tao ;
Meng, Xiang-Hua ;
Shan, Wen-Rui ;
Tian, Bo .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (04) :1470-1475