Q-matrix Extraction from Real Response Data Using Nonnegative Matrix Factorizations

被引:9
作者
Casalino, Gabriella [1 ]
Castiello, Ciro [1 ]
Del Buono, Nicoletta [2 ]
Esposito, Flavia [2 ]
Mencar, Corrado [1 ]
机构
[1] Univ Bari Aldo Moro, Dept Informat, I-70125 Bari, Italy
[2] Univ Bari Aldo Moro, Dept Math, I-70125 Bari, Italy
来源
COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2017, PT I | 2017年 / 10404卷
关键词
Nonnegative Matrix Factorization; Educational Data Mining; Q-matrix; Skill interpretation; CONSTRAINED LEAST-SQUARES; DISCOVERY;
D O I
10.1007/978-3-319-62392-4_15
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we illustrate the use of Nonnegative Matrix Factorization (NMF) to analyze real data derived from an e-learning context. NMF is a matrix decomposition method which extracts latent information from data in such a way that it can be easily interpreted by humans. Particularly, the NMF of a score matrix can automatically generate the so called Q-matrix. In an e-learning scenario, the Q-matrix describes the abilities to be acquired by students to correctly answer evaluation exams. An example on real response data illustrates the effectiveness of this factorization method as a tool for EDM.
引用
收藏
页码:203 / 216
页数:14
相关论文
共 27 条
[1]  
Alonso JM, 2015, SPRINGER HANDBOOK OF COMPUTATIONAL INTELLIGENCE, P219
[2]  
[Anonymous], 2016, MACH LEARN OPTIM BIG, DOI [DOI 10.1007/978-3-319-51469-724, DOI 10.1007/978-3-319-51469-7_24]
[3]  
[Anonymous], ADV NEURAL INFORM PR
[4]  
Beheshti B., 2012, 5th International conference on Educational Data Mining, EDM 2012, Chania, Greece, 19-21 June 2012, P81
[5]   Algorithms and applications for approximate nonnegative matrix factorization [J].
Berry, Michael W. ;
Browne, Murray ;
Langville, Amy N. ;
Pauca, V. Paul ;
Plemmons, Robert J. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 52 (01) :155-173
[6]   Metagenes and molecular pattern discovery using matrix factorization [J].
Brunet, JP ;
Tamayo, P ;
Golub, TR ;
Mesirov, JP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (12) :4164-4169
[7]  
Casalino G, 2016, SIGNALS COMMUN TECHN, P49, DOI 10.1007/978-3-662-48331-2_2
[8]   Subtractive clustering for seeding non-negative matrix factorizations [J].
Casalino, Gabriella ;
Del Buono, Nicoletta ;
Mencar, Corrado .
INFORMATION SCIENCES, 2014, 257 :369-387
[9]  
Desmarais Michel C., 2013, Artificial Intelligence in Education. Proceedings of 16th International Conference (AIED 2013): LNCS 7926, P441, DOI 10.1007/978-3-642-39112-5_45
[10]  
Desmarais Michel C., 2012, Intelligent Tutoring Systems. Proceedings 11th International Conference (ITS 2012), P454, DOI 10.1007/978-3-642-30950-2_58