Rayleigh-Taylor instability of multi-fluid layers in cylindrical geometry

被引:7
作者
Guo, Hong-Yu [1 ,2 ]
Wang, Li-Feng [2 ,3 ]
Ye, Wen-Hua [2 ,3 ]
Wu, Jun-Feng [2 ]
Zhang, Wei-Yan [2 ]
机构
[1] China Acad Engn Phys, Grad Sch, Beijing 100088, Peoples R China
[2] Inst Appl Phys & Computat Math, Beijing 100094, Peoples R China
[3] Peking Univ, Ctr Appl Phys & Technol, HEDPS, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
Rayleigh-Taylor instability; cylindrical geometry; inertial-confinement fusion implosions;
D O I
10.1088/1674-1056/26/12/125202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Rayleigh-Taylor instability of three fluid layers with two interfaces in cylindrical geometry is investigated analytically. The growth rates and the amplitudes of perturbation on the two interfaces are obtained. The feedback factor from outer to inner interface is larger than that from inner to outer interface under the same conditions. The growth rate on the initially unstable interface is larger than the corresponding result in planar geometry for low mode perturbation. The two interfaces are decoupled for a larger mode number perturbation. The dependencies of the amplitudes of perturbation on different initial conditions are analyzed. The negative feedback effect from initially stable interface to another unstable interface is observed. In the limit of infinity inner radius and finite shell thickness, the results in planar geometry are recovered.
引用
收藏
页数:6
相关论文
共 22 条
[1]   Modified helix-like instability structure on imploding z-pinch liners that are pre-imposed with a uniform axial magnetic field [J].
Awe, T. J. ;
Jennings, C. A. ;
McBride, R. D. ;
Cuneo, M. E. ;
Lamppa, D. C. ;
Martin, M. R. ;
Rovang, D. C. ;
Sinars, D. B. ;
Slutz, S. A. ;
Owen, A. C. ;
Tomlinson, K. ;
Gomez, M. R. ;
Hansen, S. B. ;
Herrmann, M. C. ;
Jones, M. C. ;
McKenney, J. L. ;
Robertson, G. K. ;
Rochau, G. A. ;
Savage, M. E. ;
Schroen, D. G. ;
Stygar, W. A. .
PHYSICS OF PLASMAS, 2014, 21 (05)
[2]  
Bell G I, 1951, 1321 LA LOS AL NAT L
[3]   Weakly nonlinear theory for the ablative Rayleigh-Taylor instability -: art. no. 185003 [J].
Garnier, J ;
Raviart, PA ;
Cherfils-Clérouin, C ;
Masse, L .
PHYSICAL REVIEW LETTERS, 2003, 90 (18) :4
[4]   Linear Growth of Rayleigh-Taylor Instability of Two Finite-Thickness Fluid Layers [J].
Guo, Hong-Yu ;
Wang, Li-Feng ;
Ye, Wen-Hua ;
Wu, Jun-Feng ;
Zhang, Wei-Yan .
CHINESE PHYSICS LETTERS, 2017, 34 (07)
[5]   Weakly Nonlinear Rayleigh-Taylor Instability in Incompressible Fluids with Surface Tension [J].
Guo, Hong-Yu ;
Wang, Li-Feng ;
Ye, Wen-Hua ;
Wu, Jun-Feng ;
Zhang, Wei-Yan .
CHINESE PHYSICS LETTERS, 2017, 34 (04)
[6]   On the Second Harmonic Generation through Bell-Plesset Effects in Cylindrical Geometry [J].
Guo Hong-Yu ;
Yu Xiao-Jin ;
Wang Li-Feng ;
Ye Wen-Hua ;
Wu Jun-Feng ;
Li Ying-Jun .
CHINESE PHYSICS LETTERS, 2014, 31 (04)
[7]   Measurement of feedthrough and instability growth in radiation-driven cylindrical implosions [J].
Hsing, WW ;
Hoffman, NM .
PHYSICAL REVIEW LETTERS, 1997, 78 (20) :3876-3879
[8]   The physics basis for ignition using indirect-drive targets on the National Ignition Facility [J].
Lindl, JD ;
Amendt, P ;
Berger, RL ;
Glendinning, SG ;
Glenzer, SH ;
Haan, SW ;
Kauffman, RL ;
Landen, OL ;
Suter, LJ .
PHYSICS OF PLASMAS, 2004, 11 (02) :339-491
[9]   NORMAL-MODES AND SYMMETRIES OF THE RAYLEIGH-TAYLOR INSTABILITY IN STRATIFIED FLUIDS [J].
MIKAELIAN, KO .
PHYSICAL REVIEW LETTERS, 1982, 48 (19) :1365-1368
[10]   RAYLEIGH-TAYLOR INSTABILITIES IN STRATIFIED FLUIDS [J].
MIKAELIAN, KO .
PHYSICAL REVIEW A, 1982, 26 (04) :2140-2158