Temperature-controlled magnetic nanoparticles hyperthermia inhibits primary tumor growth and metastases dissemination

被引:56
作者
Garanina, Anastasiia S. [1 ,2 ]
Naumenko, Victor A. [1 ,3 ]
Nikitin, Aleksey A. [1 ,2 ]
Myrovali, Eirini [4 ]
Petukhova, Anna Y. [1 ]
Klimyuk, Svetlana V. [1 ]
Nalench, Yulia A. [1 ]
Ilyasov, Artem R. [1 ]
Vodopyanov, Stepan S. [1 ]
Erofeev, Alexander S. [1 ,2 ]
Gorelkin, Peter V. [5 ]
Angelakeris, Makis [4 ]
Savchenko, Alexander G. [1 ]
Wiedwald, Ulf [1 ,6 ,7 ]
Majouga, Alexander G. [1 ,2 ,8 ]
Abakumov, Maxim A. [1 ,9 ]
机构
[1] Natl Univ Sci & Technol MISiS, Moscow, Russia
[2] Lomonosov Moscow State Univ, Moscow, Russia
[3] Natl Med Res Ctr Psychiat & Narcol, Moscow, Russia
[4] Aristotle Univ Thessaloniki, Sch Phys, Thessaloniki, Greece
[5] Med Nanotechnol LLC, Skolkovo Innovat Ctr, Moscow, Russia
[6] Univ Duisburg Essen, Fac Phys, Duisburg, Germany
[7] Univ Duisburg Essen, Ctr Nanointegrat Duisburg Essen, Duisburg, Germany
[8] D Mendeleev Univ Chem Technol Russia, Moscow, Russia
[9] Russian Natl Res Med Univ, Dept Med Nanobiotechnol, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
Magnetic hyperthermia; Cobalt ferrite nanoparticles; Temperature-dependent heating; Murine tumor models; Metastasis; IRON-OXIDE NANOCUBES; LOCAL HYPERTHERMIA; PHOSPHATIDYLSERINE EXPOSURE; CLINICAL-APPLICATIONS; PHOTODYNAMIC THERAPY; RADIATION-THERAPY; CANCER; APOPTOSIS; CELLS; RADIOTHERAPY;
D O I
10.1016/j.nano.2020.102171
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Magnetic hyperthermia (MHT) is a promising approach for cancer therapy. However, a systematic MHT characterization as function of temperature on the therapeutic efficiency is barely analyzed. Here, we first perform comparative temperature-dependent analysis of the cobalt ferrite nanoparticles-mediated MHT effectiveness in two murine tumors models - breast (4T1) and colon (CT26) cancer in vitro and in vivo. The overall MHT killing capacity in vitro increased with the temperature and CT26 cells were more sensitive than 4T1 when heated to 43 degrees C. Well in line with the in vitro data, such heating cured non-metastatic CT26 tumors in vivo, while only inhibiting metastatic 4T1 tumor growth without improving the overall survival. High-temperature MHT (N47 degrees C) resulted in complete 4T1 primary tumor clearance, 25-40% long-term survival rates, and, importantly, more effective prevention of metastasis comparing to surgical extraction. Thus, the specific MHT temperature must be defined for each tumor individually to ensure a successful antitumor therapy. (c) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:12
相关论文
共 60 条
[1]   Identification of a highly immunogenic mouse breast cancer sub cell line, 4T1-S [J].
Abe, Hirotake ;
Wada, Haruka ;
Baghdadi, Muhammad ;
Nakanishi, Sayaka ;
Usui, Yuu ;
Tsuchikawa, Takahiro ;
Shichinohe, Toshiaki ;
Hirano, Satoshi ;
Seino, Ken-ichiro .
HUMAN CELL, 2016, 29 (02) :58-66
[2]   Photodynamic Therapy of Cancer: An Update [J].
Agostinis, Patrizia ;
Berg, Kristian ;
Cengel, Keith A. ;
Foster, Thomas H. ;
Girotti, Albert W. ;
Gollnick, Sandra O. ;
Hahn, Stephen M. ;
Hamblin, Michael R. ;
Juzeniene, Asta ;
Kessel, David ;
Korbelik, Mladen ;
Moan, Johan ;
Mroz, Pawel ;
Nowis, Dominika ;
Piette, Jacques ;
Wilson, Brian C. ;
Golab, Jakub .
CA-A CANCER JOURNAL FOR CLINICIANS, 2011, 61 (04) :250-281
[3]   Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells [J].
Ahamed, Maqusood ;
Akhtar, Mohd Javed ;
Siddiqui, Maqsood A. ;
Ahmad, Javed ;
Musarrat, Javed ;
Al-Khedhairy, Abdulaziz A. ;
AlSalhi, Mohamad S. ;
Alrokayan, Salman A. .
TOXICOLOGY, 2011, 283 (2-3) :101-108
[4]   Magnetic nanoparticles: A multifunctional vehicle for modern theranostics [J].
Angelakeris, M. .
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2017, 1861 (06) :1642-1651
[5]  
Arruebo Manuel, 2011, Cancers (Basel), V3, P3279, DOI 10.3390/cancers3033279
[6]   Luciferase Expression Allows Bioluminescence Imaging But Imposes Limitations on the Orthotopic Mouse (4T1) Model of Breast Cancer [J].
Baklaushev, V. P. ;
Kilpelainen, A. ;
Petkov, S. ;
Abakumov, M. A. ;
Grinenko, N. F. ;
Yusubalieva, G. M. ;
Latanova, A. A. ;
Gubskiy, I. L. ;
Zabozlaev, F. G. ;
Starodubova, E. S. ;
Abakumova, T. O. ;
Isaguliants, M. G. ;
Chekhonin, V. P. .
SCIENTIFIC REPORTS, 2017, 7
[7]   Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology [J].
Bentzen, Soren M. .
NATURE REVIEWS CANCER, 2006, 6 (09) :702-713
[8]   Redox Paradox: A Novel Approach to Therapeutics-Resistant Cancer [J].
Chaiswing, Luksana ;
St Clair, William H. ;
St Clair, Daret K. .
ANTIOXIDANTS & REDOX SIGNALING, 2018, 29 (13) :1237-1272
[9]   Biologically Targeted Magnetic Hyperthermia: Potential and Limitations [J].
Chang, David ;
Lim, May ;
Goos, Jeroen A. C. M. ;
Qiao, Ruirui ;
Ng, Yun Yee ;
Mansfeld, Friederike M. ;
Jackson, Michael ;
Davis, Thomas P. ;
Kavallaris, Maria .
FRONTIERS IN PHARMACOLOGY, 2018, 9
[10]   Stereotactic radiation therapy for inoperable, early-stage non-small-cell lung cancer [J].
Dahele, Max ;
Brade, Anthony ;
Pearson, Shannon ;
Bezjak, Andrea .
CANADIAN MEDICAL ASSOCIATION JOURNAL, 2009, 180 (13) :1326-1328