Application of bagging in day-ahead electricity price forecasting and factor augmentation

被引:14
|
作者
Ozen, Kadir [1 ]
Yildirim, Dilem [2 ]
机构
[1] Barcelona Grad Sch Econ, Ramon Trias Fargas 25-27, Barcelona 08005, Spain
[2] Middle East Tech Univ, Dept Econ, TR-06800 Ankara, Turkey
关键词
Bagging; Shrinkage methods; Electricity price forecasting; Multivariate modeling; Forecast encompassing; Factor models; ECONOMIC TIME-SERIES; BOOTSTRAP; SELECTION; HETEROSKEDASTICITY; SHRINKAGE; MODEL;
D O I
10.1016/j.eneco.2021.105573
中图分类号
F [经济];
学科分类号
02 ;
摘要
The electricity price forecasting (EPF) is a challenging task not only because of the uncommon characteristics of electricity but also because of the existence of many potential predictors with changing predictive abilities over time. In such an environment, how to account for all available factors and extract as much information as possible is the key to the production of accurate forecasts. To address this long-standing issue in a way that balances complexity and forecasting accuracy while facilitating the traceability of the predictor selection procedure, we propose the method of Bootstrap Aggregation (bagging). To forecast day-ahead electricity prices in a multivariate context for six major power markets, we construct a large-scale pure price model and apply the bagging approach in comparison with the popular Least Absolute Shrinkage and Selection Operator (LASSO) estimation method. Our forecasting study reveals that bagging provides substantial forecast improvements on daily and hourly scales in almost all markets over the popular LASSO estimation method. The differentiation in the forecast performances of the two approaches appears to arise, inter alia, from their structural differences in the explanatory variables selection process. Moreover, to account for the intraday hourly dependencies of day-ahead electricity prices, all our models are augmented with latent factors, and a substantial improvement is observed only in the forecasts from models covering a relatively limited number of predictors.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Price forecasting in the day-ahead electricity market
    Monroy, JJR
    Kita, H
    Tanaka, E
    Hasegawa, J
    UPEC 2004: 39th International Universitities Power Engineering Conference, Vols 1-3, Conference Proceedings, 2005, : 1303 - 1307
  • [2] DAY-AHEAD ELECTRICITY PRICE FORECASTING: LITHUANIAN CASE
    Bobinaite, Viktorija
    ELECTRICAL AND CONTROL TECHNOLOGIES, 2011, : 169 - 174
  • [3] Day-ahead electricity price forecasting in a grid environment
    Li, Guang
    Liu, Chen-Ching
    Mattson, Chris
    Lawarree, Jacques
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2007, 22 (01) : 266 - 274
  • [4] Electricity price forecasting for PJM day-ahead market
    Mandal, Paras
    Senjyu, Tomonobu
    Urasaki, Naomitsu
    Funabashi, Toshihisa
    Srivastava, Anurag K.
    2006 IEEE/PES POWER SYSTEMS CONFERENCE AND EXPOSITION. VOLS 1-5, 2006, : 1321 - +
  • [5] Day-Ahead Price Forecasting for the Spanish Electricity Market
    Romero, Alvaro
    Ramon Dorronsoro, Jose
    Diaz, Julia
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2019, 5 (04): : 42 - 50
  • [6] Deep learning for day-ahead electricity price forecasting
    Zhang, Chi
    Li, Ran
    Shi, Heng
    Li, Furong
    IET SMART GRID, 2020, 3 (04) : 462 - 469
  • [7] Hierarchical forecasting for aggregated curves with an application to day-ahead electricity price auctions
    Ghelasi, Paul
    Ziel, Florian
    INTERNATIONAL JOURNAL OF FORECASTING, 2024, 40 (02) : 581 - 596
  • [8] Day-Ahead Electricity Price Forecasting Using Artificial Intelligence
    Zhang, Jun
    Cheng, Chuntian
    2008 IEEE ELECTRICAL POWER AND ENERGY CONFERENCE, 2008, : 156 - 160
  • [9] Day-ahead electricity price forecasting by a new hybrid method
    Zhang, Jinliang
    Tan, Zhongfu
    Yang, Shuxia
    COMPUTERS & INDUSTRIAL ENGINEERING, 2012, 63 (03) : 695 - 701
  • [10] Error Compensation Enhanced Day-Ahead Electricity Price Forecasting
    Kontogiannis, Dimitrios
    Bargiotas, Dimitrios
    Daskalopulu, Aspassia
    Arvanitidis, Athanasios Ioannis
    Tsoukalas, Lefteri H.
    ENERGIES, 2022, 15 (04)