Deep Learning-Based Forgery Attack on Document Images

被引:18
|
作者
Zhao, Lin [1 ,2 ,3 ]
Chen, Changsheng [1 ,2 ,3 ]
Huang, Jiwu [1 ,2 ,3 ]
机构
[1] Shenzhen Univ, Guangdong Key Lab Intelligent Informat Proc, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Shenzhen Key Lab Media Secur, Shenzhen 518060, Peoples R China
[3] Shenzhen Inst Artificial Intelligence & Robot Soc, Shenzhen 518172, Peoples R China
关键词
Forgery; Training; Authentication; Visualization; Task analysis; Security; Forensics; Document image; text editing; deep learning; NETWORKS;
D O I
10.1109/TIP.2021.3112048
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the ongoing popularization of online services, the digital document images have been used in various applications. Meanwhile, there have emerged some deep learning-based text editing algorithms which alter the textual information of an image in an end-to-end fashion. In this work, we present a low-cost document forgery algorithm by the existing deep learning-based technologies to edit practical document images. To achieve this goal, the limitations of existing text editing algorithms towards complicated characters and complex background are addressed by a set of network design strategies. First, the unnecessary confusion in the supervision data is avoided by disentangling the textual and background information in the source images. Second, to capture the structure of some complicated components, the text skeleton is provided as auxiliary information and the continuity in texture is considered explicitly in the loss function. Third, the forgery traces induced by the text editing operation are mitigated by some post-processing operations which consider the distortions from the print-and-scan channel. Quantitative comparisons of the proposed method and the exiting approach have shown the advantages of our design by reducing the about 2/3 reconstruction error measured in MSE, improving reconstruction quality measured in PSNR and in SSIM by 4 dB and 0.21, respectively. Qualitative experiments have confirmed that the reconstruction results of the proposed method are visually better than the existing approach in both complicated characters and complex texture. More importantly, we have demonstrated the performance of the proposed document forgery algorithm under a practical scenario where an attacker is able to alter the textual information in an identity document using only one sample in the target domain. The forged-and-recaptured samples created by the proposed text editing attack and recapturing operation have successfully fooled some existing document authentication systems.
引用
收藏
页码:7964 / 7979
页数:16
相关论文
共 50 条
  • [1] Deep learning for automated forgery detection in hyperspectral document images
    Khan, Muhammad Jaleed
    Yousaf, Adeel
    Abbas, Asad
    Khurshid, Khurram
    JOURNAL OF ELECTRONIC IMAGING, 2018, 27 (05)
  • [2] A survey on deep learning-based image forgery detection
    Mehrjardi, Fatemeh Zare
    Latif, Ali Mohammad
    Zarchi, Mohsen Sardari
    Sheikhpour, Razieh
    PATTERN RECOGNITION, 2023, 144
  • [3] Deep learning-based image forgery detection system
    Suresh, Helina Rajini
    Shanmuganathan, M.
    Senthilkumar, T.
    Vidhyasagar, B. S.
    INTERNATIONAL JOURNAL OF ELECTRONIC SECURITY AND DIGITAL FORENSICS, 2024, 16 (02) : 160 - 172
  • [4] Deep learning-based forgery identification and localization in videos
    Raghavendra Gowda
    Digambar Pawar
    Signal, Image and Video Processing, 2023, 17 : 2185 - 2192
  • [5] Deep learning-based forgery identification and localization in videos
    Gowda, Raghavendra
    Pawar, Digambar
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (05) : 2185 - 2192
  • [6] Deep Learning-based forgery detection and localization for compressed images using a hybrid optimization model
    Bhowal, Arundhati
    Neogy, Sarmistha
    Naskar, Ruchira
    MULTIMEDIA SYSTEMS, 2024, 30 (03)
  • [7] A new deep learning-based method to detection of copy-move forgery in digital images
    Muzaffer, Gul
    Ulutas, Guzin
    2019 SCIENTIFIC MEETING ON ELECTRICAL-ELECTRONICS & BIOMEDICAL ENGINEERING AND COMPUTER SCIENCE (EBBT), 2019,
  • [8] Deep learning-based efficient and robust image forgery detection
    KASIM Ö.
    Multimedia Tools and Applications, 2024, 83 (21) : 59819 - 59838
  • [9] Deep Learning-Based Digital Image Forgery Detection System
    Qazi, Emad Ul Haq
    Zia, Tanveer
    Almorjan, Abdulrazaq
    APPLIED SCIENCES-BASEL, 2022, 12 (06):
  • [10] Document images classification based on deep learning
    Hu, Biao
    Ergu, Daji
    Yang, Huan
    Liu, Kuiyi
    Cai, Ying
    7TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT (ITQM 2019): INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT BASED ON ARTIFICIAL INTELLIGENCE, 2019, 162 : 514 - 522