Fixed Point Theorems for Suzuki Generalized Nonexpansive Multivalued Mappings in Banach Spaces

被引:25
作者
Abkar, A. [1 ]
Eslamian, M. [1 ]
机构
[1] Imam Khomeini Int Univ, Dept Math, Qazvin 34149, Iran
关键词
Banach Space; Fixed Point Theorem; Nonexpansive Mapping; Multivalued Mapping; Common Fixed Point;
D O I
10.1155/2010/457935
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the first part of this paper, we prove the existence of common fixed points for a commuting pair consisting of a single-valued and a multivalued mapping both satisfying the Suzuki condition in a uniformly convex Banach space. In this way, we generalize the result of Dhompongsa et al. (2006). In the second part of this paper, we prove a fixed point theorem for upper semicontinuous mappings satisfying the Suzuki condition in strictly L(tau) spaces; our result generalizes a recent result of Dominguez-Benavides et al. (2009)
引用
收藏
页数:10
相关论文
共 11 条
[1]  
ABKAR A, FIXED POINT IN PRESS
[2]   Edelstein's method and fixed point theorems for some generalized nonexpansive mappings [J].
Dhompongsa, S. ;
Inthakon, W. ;
Kaewkhao, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 350 (01) :12-17
[3]   The Dominguez-Lorenzo condition and multivalued nonexpansive mappings [J].
Dhompongsa, S ;
Kaewcharoen, A ;
Kaewkhao, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (05) :958-970
[4]  
Dominguez-Benavides T, 1998, ABSTR APPL ANAL, V3, P343, DOI DOI 10.1155/S1085337598000591
[5]  
DOMINGUEZBENAVI.T, 2009, NONLINEAR ANAL-THEOR, V71, P1562
[6]  
Goebel K., 1983, American Mathematical Society, Providence, RI ppMathematics, V21, P115
[7]  
Goebel K, 1975, ANN U M CURIESKLODOW, V29, P70
[8]  
Goebel K., 1990, Topics in Metric Fixed Point Theory
[9]  
HU S, 1997, MATH APPL, V1
[10]   FIXED-POINT THEOREM FOR MULTIVALUED NONEXPANSIVE MAPPINGS IN A UNIFORMLY CONVEX BANACH-SPACE [J].
LIM, TC .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 80 (06) :1123-1126