A comparison of relevance feedback strategies in CBIR

被引:2
作者
Das, Gita [1 ]
Ray, Sid [1 ]
机构
[1] Monash Univ, Clayton Sch Informat Technol, Clayton, Vic 3800, Australia
来源
6TH IEEE/ACIS INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCE, PROCEEDINGS | 2007年
关键词
D O I
10.1109/ICIS.2007.12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Relevance Feedback (RF) is considered to be very useful in reducing semantic gap and thus enhancing accuracy of a Content-Based Image Retrieval system. In this paper, we have given a brief overview of research done in. this area with an emphasis on feature re-weighting approach, a popular RF technique. We have also discussed an instance-based approach that has been introduced very recently. We considered image retrieval as a dichotomous classification problem and compared performances of the two RF strategies with four different datasets, with number of images ranging from 1000 to 19511.
引用
收藏
页码:100 / +
页数:2
相关论文
共 26 条
[1]  
AKSOY S, 2000, P COMP VIS PATT REC, V2
[2]  
AKSOY S, 2000, INT C PATT REC BARC
[3]  
ASHWIN T, 2001, P IEEE INT C AC SPEE
[4]  
Crucianu M., 2004, DELOS2 EUR NETW EXC, pFP6
[5]  
DAS G, 2006, P INT C IM VID RETR, P387
[6]  
Das G., 2005, P IM VIS COMP NZ 200, P387
[7]  
DAS G, 2006, P IEEE INT C ADV VID
[8]  
DUDA RO, 2001, NEW YORK CHICHESTER
[9]  
GIACINTO G, 2005, ADV NEURAL INFORM PR, V17, P489
[10]  
Huang TS, 2001, 2001 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL III, PROCEEDINGS, P2, DOI 10.1109/ICIP.2001.958036