Corynebacterium glutamicum Metabolic Engineering with CRISPR Interference (CRISPRi)

被引:206
作者
Cleto, Sara [1 ,2 ,3 ]
Jensen, Jaide V. K. [1 ,2 ,3 ,4 ,5 ]
Wendisch, Volker F. [4 ,5 ]
Lu, Timothy K. [1 ,2 ,3 ]
机构
[1] MIT, Dept Elect Engn & Comp Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Dept Biol Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] MIT, Synthet Biol Ctr, 500 Technol Sq, Cambridge, MA 02139 USA
[4] Univ Bielefeld, Fac Biol, Genet Prokaryotes, D-33615 Bielefeld, Germany
[5] Univ Bielefeld, CeBiTec, D-33615 Bielefeld, Germany
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
C; glutamicum; CRISPRi; sgRNA/dCas9; amino acid; metabolic engineering; PHOSPHOENOLPYRUVATE CARBOXYKINASE GENE; ESCHERICHIA-COLI; AMINO-ACIDS; RNA; SYSTEM; EXPRESSION; BACTERIA; PATHWAY; GENOME; DNA;
D O I
10.1021/acssynbio.5b00216
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Corynebacterium glutamicum is an important organism for the industrial production of amino acids. Metabolic pathways in this organism are usually engineered by conventional methods such as homologous recombination, which depends on rare double-crossover events. To facilitate the mapping of gene expression levels to metabolic outputs, we applied CRISPR interference (CRISPRi) technology using deactivated Cas9 (dCas9) to repress genes in C. glutamicum. We then determined the effects of target repression on amino acid titers. Single-guide RNAs directing dCas9 to specific targets reduced expression of pgi and pck up to 98%, and of pyk up to 97%, resulting in titer enhancement ratios of l-lysine and l-glutamate production comparable to levels achieved by gene deletion. This approach for C. glutamicum metabolic engineering, which only requires 3 days, indicates that CRISPRi can be used for quick and efficient metabolic pathway remodeling without the need for gene deletions or mutations and subsequent selection.
引用
收藏
页码:375 / 385
页数:11
相关论文
共 70 条
[1]  
ALBERGHINA L, 2005, TOPICS CURRENT GENET, V13, P408
[2]  
[Anonymous], 2015, AMINO ACIDS GLOBAL S
[3]   Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system [J].
Bikard, David ;
Jiang, Wenyan ;
Samai, Poulami ;
Hochschild, Ann ;
Zhang, Feng ;
Marraffini, Luciano A. .
NUCLEIC ACIDS RESEARCH, 2013, 41 (15) :7429-7437
[4]   A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level [J].
Binder, Stephan ;
Schendzielorz, Georg ;
Staebler, Norma ;
Krumbach, Karin ;
Hoffmann, Kristina ;
Bott, Michael ;
Eggeling, Lothar .
GENOME BIOLOGY, 2012, 13 (05)
[5]   Acetohydroxyacid Synthase, a Novel Target for Improvement of L-Lysine Production by Corynebacterium glutamicum [J].
Blombach, Bastian ;
Hans, Stephan ;
Bathe, Brigitte ;
Eikmanns, Bernhard J. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2009, 75 (02) :419-427
[6]  
Burke K., 2001, Eur. Pat. Off, Patent No. [EP 1 087 015 A2, 1087015]
[7]   Enhanced killing of antibiotic-resistant bacteria enabled by massively parallel combinatorial genetics [J].
Cheng, Allen A. ;
Ding, Huiming ;
Lu, Timothy K. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (34) :12462-12467
[8]   Bacterial Small RNA-based Negative Regulation: Hfq and Its Accomplices [J].
De Lay, Nicholas ;
Schu, Daniel J. ;
Gottesman, Susan .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2013, 288 (12) :7996-8003
[9]   CRISPR/Cas System and Its Role in Phage-Bacteria Interactions [J].
Deveau, Helene ;
Garneau, Josiane E. ;
Moineau, Sylvain .
ANNUAL REVIEW OF MICROBIOLOGY, VOL 64, 2010, 2010, 64 :475-493
[10]  
Eggeling L., 2005, Handbook of Corynebacterium glutamicum