A unified framework for M-estimation based robust Kalman smoothing

被引:12
作者
Wang, Hongwei [1 ,2 ]
Li, Hongbin [2 ]
Zhang, Wei [1 ]
Zuo, Junyi [1 ]
Wang, Heping [1 ]
机构
[1] Northwestern Polytech Univ, Sch Aeronaut, Xian 710072, Shaanxi, Peoples R China
[2] Stevens Inst Technol, Dept Elect & Comp Engn, Hoboken, NJ 07307 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Robust Kalman smoother; M-estimation; State-space modeling; Majorization-minimization; FILTER;
D O I
10.1016/j.sigpro.2018.12.017
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We consider the robust smoothing problem for a state-space model with outliers in measurements. A unified framework for robust smoothing based on M-estimation is developed, in which the robust smoothing problem is formulated by replacing the quadratic loss for measurement fitting in the conventional Kalman smoother by a robust cost function from robust statistics. The majorization-minimization method is employed to iteratively solve the formulated robust smoothing problem. In each iteration, a surrogate function is constructed for the robust cost, which enables the states update procedure to be implemented in a similar way as that in a conventional Kalman smoother with a reweighted measurement covariance. Numerical experiments show that the proposed robust approach outperforms the traditional Kalman smoother and several robust filtering methods. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:61 / 65
页数:5
相关论文
共 25 条
  • [1] Sigma-Point Kalman Filtering for Spacecraft Attitude and Rate Estimation using Magnetometer Measurements
    Abdelrahman, Mohammad
    Park, Sang-Young
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2011, 47 (02) : 1401 - 1415
  • [2] Generalized Kalman smoothing: Modeling and algorithms
    Aravkin, Aleksandr
    Burke, James V.
    Ljung, Lennart
    Lozano, Aurelie
    Pillonetto, Gianluigi
    [J]. AUTOMATICA, 2017, 86 : 63 - 86
  • [3] ROBUST AND TREND-FOLLOWING STUDENT'S T KALMAN SMOOTHERS
    Aravkin, Aleksandr Y.
    Burke, James V.
    Pillonetto, Gianluigi
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2014, 52 (05) : 2891 - 2916
  • [4] An l1-Laplace Robust Kalman Smoother
    Aravkin, Aleksandr Y.
    Bell, Bradley M.
    Burke, James V.
    Pillonetto, Gianluigi
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (12) : 2892 - 2905
  • [5] A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
    Arulampalam, MS
    Maskell, S
    Gordon, N
    Clapp, T
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) : 174 - 188
  • [6] Converted Measurement Sigma Point Kalman Filter for Bistatic Sonar and Radar Tracking
    Bordonaro, Steven V.
    Willett, Peter
    Bar-Shalom, Yaakov
    Luginbuhl, Tod
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2019, 55 (01) : 147 - 159
  • [7] Unified Form for the Robust Gaussian Information Filtering Based on M-Estimate
    Chang, Lubin
    Li, Kailong
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (04) : 412 - 416
  • [8] Robust derivative-free Kalman filter based on Huber's M-estimation methodology
    Chang, Lubin
    Hu, Baiqing
    Chang, Guobin
    Li, An
    [J]. JOURNAL OF PROCESS CONTROL, 2013, 23 (10) : 1555 - 1561
  • [9] Exact reconstruction of sparse signals via nonconvex minimization
    Chartrand, Rick
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2007, 14 (10) : 707 - 710
  • [10] Maximum correntropy Kalman filter
    Chen, Badong
    Liu, Xi
    Zhao, Haiquan
    Principe, Jose C.
    [J]. AUTOMATICA, 2017, 76 : 70 - 77