A Haar-like construction for the Ornstein Uhlenbeck process

被引:3
作者
Taillefumier, Thibaud
Magnasco, Marcelo O.
机构
[1] Laboratory of Mathematical Physics, Rockefeller University, New York
基金
美国国家卫生研究院;
关键词
Ornstein-Uhlenbeck process; Brownian motion; Haar basis;
D O I
10.1007/s10955-008-9545-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The classical Haar construction of Brownian motion uses a binary tree of triangular wedge-shaped functions. This basis has compactness properties which make it especially suited for certain classes of numerical algorithms. We present a similar basis for the Ornstein-Uhlenbeck process, in which the basis elements approach asymptotically the Haar functions as the index increases, and preserve the following properties of the Haar basis: all basis elements have compact support on an open interval with dyadic rational endpoints; these intervals are nested and become smaller for larger indices of the basis element, and for any dyadic rational, only a finite number of basis elements is nonzero at that number. Thus the expansion in our basis, when evaluated at a dyadic rational, terminates in a finite number of steps. We prove the covariance formulae for our expansion and discuss its statistical interpretation.
引用
收藏
页码:397 / 415
页数:19
相关论文
共 21 条
[11]  
Hida T., 1980, BROWNIAN MOTION
[12]   STOCHASTIC RUNGE-KUTTA ALGORITHMS .1. WHITE-NOISE [J].
HONEYCUTT, RL .
PHYSICAL REVIEW A, 1992, 45 (02) :600-603
[13]  
Karatzas I, 2000, BROWNIAN MOTION STOC
[14]   NUMERICAL-INTEGRATION OF MULTIPLICATIVE-NOISE STOCHASTIC DIFFERENTIAL-EQUATIONS [J].
KLAUDER, JR ;
PETERSEN, WP .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1985, 22 (06) :1153-1166
[15]  
Leblanc B., 2000, Finance Stochast., V4, P109
[16]  
PYKE R, 1983, HAAR FUNCTION CONSTR
[17]   1ST-PASSAGE-TIME DENSITY AND MOMENTS OF THE ORNSTEIN-UHLENBECK PROCESS [J].
RICCIARDI, LM ;
SATO, S .
JOURNAL OF APPLIED PROBABILITY, 1988, 25 (01) :43-57
[18]  
Risken H., 1989, FOKKER PLANCK EQUATI
[19]  
ROLSKI T, 2001, WILEY SERIES PROBABI
[20]   ON THE 1ST PASSAGE TIME PROBABILITY PROBLEM [J].
SIEGERT, AJF .
PHYSICAL REVIEW, 1951, 81 (04) :617-623