Classification of Respiratory States Using Spectrogram with Convolutional Neural Network

被引:5
|
作者
Park, Cheolhyeong [1 ]
Lee, Deokwoo [1 ]
机构
[1] Keimyung Univ, Dept Comp Engn, Daegu 42601, South Korea
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 04期
关键词
respiration status; UWB radar; respiratory signal; classification; deep neural network; OBSTRUCTIVE SLEEP-APNEA; HEART-RATE-VARIABILITY; LEAD ELECTROCARDIOGRAM; ENTROPY; NOISE;
D O I
10.3390/app12041895
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper proposes an approach to the classification of respiration states based on a neural network model by visualizing respiratory signals using a spectrogram. The analysis and processing of human biosignals are still considered some of the most crucial and fundamental research areas in both signal processing and medical applications. Recently, learning-based algorithms in signal and image processing for medical applications have shown significant improvement from both quantitative and qualitative perspectives. Human respiration is still considered an important factor for diagnosis, and it plays a key role in preventing fatal diseases in practice. This paper chiefly deals with a contactless-based approach for the acquisition of respiration data using an ultra-wideband (UWB) radar sensor because it is simple and easy for use in an experimental setup and shows high accuracy in distance estimation. This paper proposes the classification of respiratory states by using a feature visualization scheme, a spectrogram, and a neural network model. The proposed method shows competitive and promising results in the classification of respiratory states. The experimental results also show that the method provides better accuracy (precision: 0.86 and specificity: 0.90) than conventional methods that use expensive equipment for respiration measurement.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] MOLECULE CLASSIFICATION USING VISUALIZATION AND CONVOLUTIONAL NEURAL NETWORK
    Lakatos, Istvan
    Hajdu, Andras
    Harangi, Balazs
    2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 1695 - 1698
  • [42] Pathology Image Classification Using Convolutional Neural Network
    Li, Qunxian
    2015 2ND INTERNATIONAL CONFERENCE ON EDUCATION AND EDUCATION RESEARCH (EER 2015), PT 5, 2015, 9 : 331 - 335
  • [43] Fingerprint Classification using a Deep Convolutional Neural Network
    Pandya, Bhavesh
    Cosma, Georgina
    Alani, Ali A.
    Taherkhani, Aboozar
    Bharadi, Vinayak
    McGinnity, T. M.
    2018 4TH INTERNATIONAL CONFERENCE ON INFORMATION MANAGEMENT (ICIM2018), 2018, : 86 - 91
  • [44] Breast Cancer Classification Using Convolutional Neural Network
    Alshanbari, Eman
    Alamri, Hanaa
    Alzahrani, Walaa
    Alghamdi, Manal
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2021, 21 (06): : 101 - 106
  • [45] Vehicle Type Classification Using Convolutional Neural Network
    Hicham, Bensedik
    Ahmed, Azough
    Mohammed, Meknasssi
    2018 IEEE 5TH INTERNATIONAL CONGRESS ON INFORMATION SCIENCE AND TECHNOLOGY (IEEE CIST'18), 2018, : 313 - 316
  • [46] WOODEN DOWELS CLASSIFICATION USING CONVOLUTIONAL NEURAL NETWORK
    Paulauskaite-Taraseviciene, Agne
    Sutiene, Kristina
    Pipiras, Laurynas
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2019, 20 (04): : 401 - 408
  • [47] Advertisement Image Classification Using Convolutional Neural Network
    An Tien Vo
    Hai Son Tran
    Thai Hoang Le
    2017 9TH INTERNATIONAL CONFERENCE ON KNOWLEDGE AND SYSTEMS ENGINEERING (KSE 2017), 2017, : 197 - 202
  • [48] Gemstone Classification Using Deep Convolutional Neural Network
    Chakraborty B.
    Mukherjee R.
    Das S.
    Journal of The Institution of Engineers (India): Series B, 2024, 105 (04) : 773 - 785
  • [49] Image Classification using small Convolutional Neural Network
    Tripathi, Shyava
    Kumar, Rishi
    2019 9TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING (CONFLUENCE 2019), 2019, : 483 - 487
  • [50] Neurological Status Classification Using Convolutional Neural Network
    Jaloli, Mehrad
    Choudhary, Divya
    Cescon, Marzia
    IFAC PAPERSONLINE, 2020, 53 (05): : 409 - 414