The Heat-Up Synthesis of Colloidal Nanocrystals

被引:328
作者
van Embden, Joel [1 ]
Chesman, Anthony S. R. [1 ]
Jasieniak, Jacek J. [1 ]
机构
[1] CSIRO Mfg Flagship, Clayton, Vic 3168, Australia
基金
澳大利亚研究理事会;
关键词
ONE-POT SYNTHESIS; PHOSPHINE-FREE SYNTHESIS; LARGE-SCALE SYNTHESIS; SHAPE-CONTROLLED SYNTHESIS; IRON-OXIDE NANOPARTICLES; SINGLE-SOURCE PRECURSORS; CORE/SHELL QUANTUM DOTS; NON-INJECTION SYNTHESIS; ONE-STEP SYNTHESIS; DEPENDENT MAGNETIC-PROPERTIES;
D O I
10.1021/cm5028964
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The successful transition of any nanocrystal-based product from the research phase to the commercial arena hinges on the ability to produce the required nanomaterial on large scales. The synthesis of colloidal nanocrystals using a heat-up (non-injection) method is a reliable means to achieve high quality nanomaterials on large scales with little or no batch-to-batch variation. In this class of synthesis precursors are heated within a reaction medium to induce a chemical reaction that yields monomer for nucleation and growth. Use of the heat-up technique circumvents the pitfalls of mixing time and poor heat management inherent to classical hot-injection methods. In heat-up syntheses monomer is produced in a more continuous fashion during the heating stage, making it more difficult to separate the nucleation and growth stages of the reaction, a factor that is conventionally considered detrimental toward achieving homogeneous colloidal dispersions. However, through the judicious selection of precursors, stabilizers, and reaction heating rates, these stages can be managed to yield colloids of comparable quality to those achieved via classical hot-injection methods. In this review we provide the reader with a fundamental basis upon which to understand the reaction requirements for achieving such favorable growth conditions. Given that the most important consideration in these reactions is precursor (and stabilizer) selection, we also provide an exposition of the precursor chemistry appropriate to achieving high quality products when using heat-up techniques. These topics form the foundation for critically evaluating the field of heat-up nanocrystal synthesis to date, including the synthesis of binary, ternary, and quaternary metal chalcogenide and pnictogenide nanocrystals, as well as metallic, metal oxide, and f-block conaining nanocrystals.
引用
收藏
页码:2246 / 2285
页数:40
相关论文
共 417 条
[91]  
Eunjung P., 2013, NANOTECHNOLOGY, V24
[92]   Mysteries of TOPSe Revealed: Insights into Quantum Dot Nucleation [J].
Evans, Christopher M. ;
Evans, Meagan E. ;
Krauss, Todd D. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (32) :10973-10975
[93]   Colloidal nanocrystals of orthorhombic Cu2ZnGeS4: phase-controlled synthesis, formation mechanism and photocatalytic behavior [J].
Fan, Cong-Min ;
Regulacio, Michelle D. ;
Ye, Chen ;
Lim, Suo Hon ;
Lua, Shun Kuang ;
Xu, Qing-Hua ;
Dong, Zhili ;
Xu, An-Wu ;
Han, Ming-Yong .
NANOSCALE, 2015, 7 (07) :3247-3253
[94]   Colloidal synthesis and photocatalytic properties of orthorhombic AgGaS2 nanocrystals [J].
Fan, Cong-Min ;
Regulacio, Michelle D. ;
Ye, Chen ;
Lim, Suo Hon ;
Zheng, Yuangang ;
Xu, Qing-Hua ;
Xu, An-Wu ;
Han, Ming-Yong .
CHEMICAL COMMUNICATIONS, 2014, 50 (54) :7128-7131
[95]   Large-Scale Colloidal Synthesis of Non-Stoichiometric Cu2ZnSnSe4 Nanocrystals for Thermoelectric Applications [J].
Fan, Feng-Jia ;
Wang, Yi-Xiu ;
Liu, Xiao-Jing ;
Wu, Liang ;
Yu, Shu-Hong .
ADVANCED MATERIALS, 2012, 24 (46) :6158-6163
[96]  
Faraday M., 1857, PHILOS T ROY SOC LON, V147, P145, DOI DOI 10.1098/RSTL.1857.0011
[97]   From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications [J].
Figuerola, Albert ;
Di Corato, Riccardo ;
Manna, Liberato ;
Pellegrino, Teresa .
PHARMACOLOGICAL RESEARCH, 2010, 62 (02) :126-143
[98]  
Fisher NG, 1999, J THERM ANAL CALORIM, V56, P43
[99]   Recent Progress in Rare Earth Micro/Nanocrystals: Soft Chemical Synthesis, Luminescent Properties, and Biomedical Applications [J].
Gai, Shili ;
Li, Chunxia ;
Yang, Piaoping ;
Lin, Jun .
CHEMICAL REVIEWS, 2014, 114 (04) :2343-2389
[100]   Improved synthesis of PbSxSe1-x ternary alloy nanocrystals and their nonlinear optical properties [J].
Gao, Bao ;
Zhao, Min ;
Wang, Qiang ;
Kang, Kai-Bin ;
Xu, Zhu-Guo ;
Zhang, Hao-Li .
NEW JOURNAL OF CHEMISTRY, 2013, 37 (06) :1692-1695