THE Kup-APPROXIMATION PROPERTY AND ITS DUALITY

被引:11
作者
Kim, Ju Myung [1 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
关键词
p-compact operator; unconditionally p-compact operator; K-p-approximation property; K-up-approximation property; FINITE-RANK OPERATORS; COMPACT-OPERATORS; P-NUCLEAR; SUBSPACES; ADJOINTS;
D O I
10.1017/S1446788714000615
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce an approximation property (K-up-AP, 1 <= p < infinity), which is weaker than the classical approximation property, and discover the duality relationship between the K-up-AP and the K-p-AP. More precisely, we prove that for every 1 < p < infinity, if the dual space X* of a Banach space X has the K-up-AP, then X has the K-p-AP, and if X* has the K-p-AP, then X has the K-up-AP. As a consequence, it follows that every Banach space has the K-u2-AP and that for every 1 < p < infinity, p not equal 2, there exists a separable reflexive Banach space failing to have the K-up-AP.
引用
收藏
页码:364 / 374
页数:11
相关论文
共 15 条
[1]  
Casazza PG, 2001, HANDBOOK OF THE GEOMETRY OF BANACH SPACES, VOL 1, P271, DOI 10.1016/S1874-5849(01)80009-7
[2]   The dual space of (L(X,Y),τp) and the p-approximation property [J].
Choi, Yun Sung ;
Kim, Ju Myung .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (09) :2437-2454
[3]   Density of finite rank operators in the Banach space of p-compact operators [J].
Delgado, J. M. ;
Pineiro, C. ;
Serrano, E. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 370 (02) :498-505
[4]   Operators whose adjoints are quasi p-nuclear [J].
Delgado, J. M. ;
Pineiro, C. ;
Serrano, E. .
STUDIA MATHEMATICA, 2010, 197 (03) :291-304
[5]   The p-approximation property in terms of density of finite rank operators [J].
Delgado, J. M. ;
Oja, E. ;
Pineiro, C. ;
Serrano, E. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 354 (01) :159-164
[6]  
Grothendieck A., 1955, MEM AM MATH SOC, V16
[7]  
Kim J. M., STUDIA MATH IN PRESS
[8]   The approximation properties via the Grothendieck p-compact sets [J].
Kim, Ju Myung .
MATHEMATISCHE NACHRICHTEN, 2013, 286 (04) :360-373
[9]   SEPARABLE CONJUGATE SPACES [J].
LINDENSTRAUSS, J .
ISRAEL JOURNAL OF MATHEMATICS, 1971, 9 (03) :279-+
[10]  
Lindenstrauss J., 1977, Classical Banach spaces I, DOI [DOI 10.1007/978-3-642-66557-8, 10.1007/978-3-642-66557-8]