A Cautionary Note on Modeling Growth Trends in Longitudinal Data

被引:27
作者
Kuljanin, Goran [1 ]
Braun, Michael T. [1 ]
DeShon, Richard P. [1 ]
机构
[1] Michigan State Univ, Dept Psychol, E Lansing, MI 48824 USA
关键词
random coefficient model; latent growth curve model; stochastic trend; unit root tests; spurious regression; TIME-SERIES; RANDOM-WALKS; UNIT ROOTS; DESIGN;
D O I
10.1037/a0023348
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
Random coefficient and latent growth curve modeling are currently the dominant approaches to the analysis of longitudinal data in psychology. The application of these models to longitudinal data assumes that the data-generating mechanism behind the psychological process under investigation contains only a deterministic trend. However, if a process, at least partially, contains a stochastic trend, then random coefficient regression results are likely to be spurious. This problem is demonstrated via a data example, previous research on simple regression models, and Monte Carlo simulations. A data analytic strategy is proposed to help researchers avoid making inaccurate inferences when observed trends may be due to stochastic processes.
引用
收藏
页码:249 / 264
页数:16
相关论文
共 50 条
[41]   Vehicle longitudinal motion modeling for nonlinear control [J].
El Majdoub, K. ;
Giri, F. ;
Ouadi, H. ;
Dugard, L. ;
Chaoui, F. Z. .
CONTROL ENGINEERING PRACTICE, 2012, 20 (01) :69-81
[42]   Longitudinal trends in gasoline price and physical activity: The CARDIA study [J].
Hou, Ningqi ;
Popkin, Barry M. ;
Jacobs, David R., Jr. ;
Song, Yan ;
Guilkey, David K. ;
He, Ka ;
Lewis, Cora E. ;
Gordon-Larsen, Penny .
PREVENTIVE MEDICINE, 2011, 52 (05) :365-369
[43]   Understanding the causes and consequences of animal movement: a cautionary note on fitting and interpreting regression models with time-dependent covariates [J].
Fieberg, J. ;
Ditmer, M. .
METHODS IN ECOLOGY AND EVOLUTION, 2012, 3 (06) :983-991
[44]   Longitudinal Association Between Depressive Symptoms and Cognitive Function Among Older Adults: A Latent Growth Curve Modeling Approach [J].
Gao, Zihan ;
Liu, Cuiping ;
Yang, Li ;
Mei, Xinyi ;
Wei, Xiao ;
Kuang, Jinke ;
Zhou, Kexin ;
Xu, Mengfan .
INTERNATIONAL JOURNAL OF PUBLIC HEALTH, 2022, 67
[45]   Marginalized models for longitudinal count data [J].
Lee, Keunbaik ;
Joo, Yongsung .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 136 :47-58
[46]   Temporal Alignment of Longitudinal Microbiome Data [J].
Armoni, Ran ;
Borenstein, Elhanan .
FRONTIERS IN MICROBIOLOGY, 2022, 13
[47]   Visualization of longitudinal data: How and why [J].
Rajeswaran, Jeevanantham ;
Blackstone, Eugene H. .
JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2024, 167 (02)
[48]   A Hierarchical Rater Model for Longitudinal Data [J].
Casabianca, Jodi M. ;
Junker, Brian W. ;
Nieto, Ricardo ;
Bond, Mark A. .
MULTIVARIATE BEHAVIORAL RESEARCH, 2017, 52 (05) :576-592
[49]   Supply Chain Cooperation Modeling: Trends and Gaps [J].
Ivakina, Anastasiia A. ;
Zenkevich, Ekaterina N. .
CONTRIBUTIONS TO GAME THEORY AND MANAGEMENT, VOL IX, 2016, 9 :180-216
[50]   A state transition framework for patient-level modeling of engagement and retention in HIV care using longitudinal cohort data [J].
Lee, Hana ;
Hogan, Joseph W. ;
Genberg, Becky L. ;
Wu, Xiaotian K. ;
Musick, Beverly S. ;
Mwangi, Ann ;
Braitstein, Paula .
STATISTICS IN MEDICINE, 2018, 37 (02) :302-319