A Cautionary Note on Modeling Growth Trends in Longitudinal Data

被引:27
作者
Kuljanin, Goran [1 ]
Braun, Michael T. [1 ]
DeShon, Richard P. [1 ]
机构
[1] Michigan State Univ, Dept Psychol, E Lansing, MI 48824 USA
关键词
random coefficient model; latent growth curve model; stochastic trend; unit root tests; spurious regression; TIME-SERIES; RANDOM-WALKS; UNIT ROOTS; DESIGN;
D O I
10.1037/a0023348
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
Random coefficient and latent growth curve modeling are currently the dominant approaches to the analysis of longitudinal data in psychology. The application of these models to longitudinal data assumes that the data-generating mechanism behind the psychological process under investigation contains only a deterministic trend. However, if a process, at least partially, contains a stochastic trend, then random coefficient regression results are likely to be spurious. This problem is demonstrated via a data example, previous research on simple regression models, and Monte Carlo simulations. A data analytic strategy is proposed to help researchers avoid making inaccurate inferences when observed trends may be due to stochastic processes.
引用
收藏
页码:249 / 264
页数:16
相关论文
共 50 条
  • [21] A note on common cycles, common trends, and convergence
    Carvalho, Vasco
    Harvey, Andrew
    Trimbur, Thomas
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2007, 25 (01) : 12 - 20
  • [22] Graphical analysis of residuals in multivariate growth curve models and applications in the analysis of longitudinal data
    Hamid, Jemila S.
    Huang, Wei Liang
    von Rosen, Dietrich
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (10) : 5556 - 5581
  • [23] Working with longitudinal data: quantifying developmental processes using function-valued trait modeling
    Baker, Robert L.
    Wang, Diane R.
    AMERICAN JOURNAL OF BOTANY, 2021, 108 (06) : 905 - 908
  • [24] PairGP: Gaussian process modeling of longitudinal data from paired multi-condition studies
    Vantini, Michele
    Mannerstrom, Henrik
    Rautio, Sini
    Ahlfors, Helena
    Stockinger, Brigitta
    Lahdesmaki, Harri
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 143
  • [25] An Introduction to Modeling Longitudinal Data With Generalized Additive Models: Applications to Single-Case Designs
    Sullivan, Kristynn J.
    Shadish, William R.
    Steiner, Peter M.
    PSYCHOLOGICAL METHODS, 2015, 20 (01) : 26 - 42
  • [26] Trends in temperature data: Micro-foundations of their nature
    Gadea-Rivas, Maria Dolores
    Gonzalo, Jesus
    Ramos, Andrey
    ECONOMICS LETTERS, 2024, 244
  • [27] A Longitudinal Study of Foreign Language Enjoyment and L2 Grit: A Latent Growth Curve Modeling
    Shirvan, Majid Elahi
    Taherian, Tahereh
    Shahnama, Mojdeh
    Yazdanmehr, Elham
    FRONTIERS IN PSYCHOLOGY, 2021, 12
  • [28] A Cautionary Note on the Use of Split-YFP/BiFC in Plant Protein-Protein Interaction Studies
    Horstman, Anneke
    Tonaco, Isabella Antonia Nougalli
    Boutilier, Kim
    Immink, Richard G. H.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2014, 15 (06) : 9628 - 9643
  • [29] A Cautionary Note on the Reproduction of Dependencies through Linear Stochastic Models with Non-Gaussian White Noise
    Tsoukalas, Ioannis
    Papalexiou, Simon Michael
    Efstratiadis, Andreas
    Makropoulos, Christos
    WATER, 2018, 10 (06)
  • [30] A Spatio-Temporal Model and Inference Tools for Longitudinal Count Data on Multicolor Cell Growth
    Qiao, PuXue
    Molck, Christina
    Ferrari, Davide
    Hollande, Frederic
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2018, 14 (02)