Bootstrap prediction and Bayesian prediction under misspecified models

被引:22
作者
Fushiki, T [1 ]
机构
[1] Inst Stat Math, Minato Ku, Tokyo 1068569, Japan
关键词
bagging; Bayesian prediction; bootstrap; Kullback-Leibler divergence; misspecification; prediction;
D O I
10.3150/bj/1126126768
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a statistical prediction problem under misspecified models. In a sense, Bayesian prediction is an optimal prediction method when an assumed model is true. Bootstrap prediction is obtained by applying Breiman's 'bagging' method to a plug-in prediction. Bootstrap prediction can be considered to be an approximation to the Bayesian prediction under the assumption that the model is true. However, in applications, there are frequently deviations from the assumed model. In this paper, both prediction methods are compared by using the Kullback-Leibler loss under the assumption that the model does not contain the true distribution. We show that bootstrap prediction is asymptotically more effective than Bayesian prediction under misspecified models.
引用
收藏
页码:747 / 758
页数:12
相关论文
共 13 条
[1]  
AITCHISON J, 1975, BIOMETRIKA, V62, P547, DOI 10.1093/biomet/62.3.547
[2]  
Akaike H, 1973, 2 INT S INFORM THEOR, P199, DOI 10.1007/978-1-4612-1694-0
[3]  
AMARI SI, 2000, METHODS INFORMATION
[4]  
[Anonymous], 1993, Predictive Inference
[5]   Bagging predictors [J].
Breiman, L .
MACHINE LEARNING, 1996, 24 (02) :123-140
[6]   Nonparametric bootstrap prediction [J].
Fushiki, T ;
Komaki, F ;
Aihara, K .
BERNOULLI, 2005, 11 (02) :293-307
[7]   On parametric bootstrapping and Bayesian prediction [J].
Fushiki, T ;
Komaki, F ;
Aihara, K .
SCANDINAVIAN JOURNAL OF STATISTICS, 2004, 31 (03) :403-416
[8]  
HARRIS IR, 1989, BIOMETRIKA, V76, P675
[9]   On asymptotic properties of predictive distributions [J].
Komaki, F .
BIOMETRIKA, 1996, 83 (02) :299-313
[10]  
MCULLAGH P, 1987, TENSOR METHODS STAT